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Abstract

Machine learning has become an essential part of medical imaging research. For example,
convolutional neural networks (CNNs) are used to perform brain tumor segmentation, which
is the process of distinguishing between tumoral and healthy cells. This task is often carried
out using four different magnetic resonance imaging (MRI) scans of the patient. Due to
the cost and effort required to produce the scans, oftentimes one of the four scans is missing,
making the segmentation process more tedious. To obviate this problem, we propose two MRI-
to-MRI translation approaches that synthesize an approximation of the missing image from an
existing one. In particular, we focus on creating the missing T2 Weighted sequence from a given
T1 Weighted sequence. We investigate clustering as a solution to this problem and propose
BrainClustering, a learning method that creates approximation tables that can be queried to
retrieve the missing image. The images are clustered with hierarchical clustering methods to
identify the main tissues of the brain, but also to capture the different signal intensities in local
areas. We compare this method to the general image-to-image translation tool Pix2Pix, which
we extend to fit our purposes. Finally, we assess the quality of the approximated solutions
by evaluating the tumor segmentations that can be achieved using the synthesized outputs.
Pix2Pix achieves the most realistic approximations, but the tumor areas are too generalized to
compute optimal tumor segmentations. BrainClustering obtains transformations that deviate
more from the original image but still provide better segmentations in terms of Hausdorff
distance and Dice score. Surprisingly, using the complement of T1 Weighted (i.e., inverting
the color of each pixel) also achieves good results. Our new methods make segmentation
software more feasible in practice by allowing the software to utilize all four MRI scans, even
if one of the scans is missing.
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Introduction 1

Modern biomedical sciences have integrated the use of computer science to automate tasks. For
example, machine learning can be used for brain tumor segmentation, which is the process of
distinguishing between tumor and healthy brain cells. The annual BraTS Challenge1 has the aim
of awarding the best strategy for this purpose. Every year, the challenge focuses on a new data set,
which is composed of four different three-dimensional MRI (Magnetic Resonance Imaging) scans
of each patient’s brain.

DeepMedic [23] is a brain tumor segmentation tool used by the radiology department of the
University Hospital of Cologne2, and it was trained with all four MRI images in order to produce
robust results. However, it is uncommon to always have all four images; oftentimes only three are
acquired because they are a time-consuming and costly resource.
This thesis aims to approximate missing MRI images; if only three images are given, we compute an
approximation of the fourth one such that software like DeepMedic can be used. This obliterates
the necessity of having all four images.
For this purpose we propose and evaluate two different methods: BrainClustering and Pix2Pix [20].
BrainClustering is a new approach and involves running clustering algorithms on the MRI scans
we are interested in. Then, we compute tables that summarize the values that are present in the
MRI images. After repeating this process with many images, we obtain extensive tables that can
be queried to compute a new image. Pix2Pix is an already existing image translation method
that is natively implemented for two-dimensional images. We modify this method to accept the
three-dimensional structure of our data.

Finally, we evaluate the methods by running DeepMedic and HD-GLIO [19, 24] (another segmen-
tation software) with four original images, and then swapping one of the images with the one
produced by BrainClustering and Pix2Pix respectively. We use common measures such as the
mean squared error, Dice score and Hausdorff distance to assess the results.

In the remainder of this chapter we provide some preliminary information about MRI imaging
and tumor segmentation. Then, we describe our clustering methods in Chapter 2 and evaluate
the clustering algorithms in Chapter 3. Afterwards, we discuss different approaches for MRI
transformation in Chapter 4 and Chapter 5, and finally we evaluate them in Chapter 6.

1.1 Data

In this section, we describe the MRI scans used throughout this work, which are taken from BraTS
13 and 19 [31, 8, 9, 7, 6]. Each MRI image is a three-dimensional image in NIfTI (Neuroimaging
Informatics Technology Initiative) format. There are three points of view of the three-dimensional
image: transverse, coronal and saggital (Figure 1.1), but for simplicity will only show the transverse
slices.

1https://www.med.upenn.edu/cbica/brats-2019/
2https://radiologie.uk-koeln.de/
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1. Introduction

(a) Transverse View (b) Coronal View (c) Saggital View

Figure 1.1: Brain MRI scan of patient 5 (BraTS 13) from different points of view.

(a) T1 Weighted (b) T2 Weighted (c) T1 Contrast Enhanced (d) T2 FLAIR

Figure 1.2: Brain MRI scan of patient 5 (BraTS 13) with respect to the four discussed sequences.

There are four types of MRI scans that are relevant to this work: T1 Weighted, T2 Weighted,
T1 Contrast Enhanced and T2 Fluid Attenuated Inversion Recovery (T2 FLAIR). They differ in
repetition time and time to echo: Repetition Time (TR) is the time between subsequent excitation
pulses of the MRI scanner. Time to Echo (TE) is the time between the center of the pulse and
the reception of the echo signal. Additionally, T1 Contrast Enhanced requires a special substance,
Gadolinium, to be injected into the patient before the scan. It enhances bright signals in the blood
vessels and locations where the bloods vessels are disrupted, such as tumors. These differences
result in some specific parts of the brain to be light in some sequences, and dark in others, as
shown in Figure 1.2.
Moreover, the different tissues of the brain have the same general signal intensity across each scan,
and we believe that there is a mapping that can be deducted between the scans.
MRI Mapping: Let t and s be any two of the four MRI sequences discussed above. An MRI
mapping is a function f with f(t) ≈ s, i.e., a function that is able to describe a mapping between
sequence t and sequence s and can be used to transform one to a good approximation of the other.

Table 1.1 shows a general brightness mapping between T1 Weighted, T2 Weighted and T2 FLAIR
with respect to different tissues, which can also be observed in Figure 1.2. The presence of a
regional mapping means that, if we are able to divide the brain into smaller parts, then we can
reproduce this mapping and use it to obtain one image given another.

1.1.1 Tumor Segmentation
In addition to the four MRI scans, BraTS also provides the ground truth of the tumor for most of
the images. Moreover, the data is divided into two subsets according to the tumor type: patients
with Low Grade Glioma (LGG) and patients with High Grade Glioma (HGG).

3Source: https://case.edu/med/neurology/NR/MRI%20Basics.htm.
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1.1. Data

(a) Low Grade Glioma (b) High Grade Glioma

Figure 1.3: [Best viewed in color] Example of patients with LGG (patient 0 from BraTS 19) and
HGG (patient 10 from BraTS 19) together with their tumor segmentation (yellow).

Gliomas are a type of brain tumor that starts from non-neuronal cells. HGG are more invasive
and progress faster than LGG. The type of therapy that a patient undergoes depends on the type
of glioma. Figure 1.3 provides an example of a low grade and a high grade glioma.

The BraTS 19 ground truth is annotated manually by one to four raters, and their labels have
been approved by experienced neurologists. The segmentation is divided into four classes:

Class 1: The necrotic core of the tumor.

Class 2: An excess of fluid, also called cerebral edema, associated with the tumor.

Class 3: Non-enhanced part of the tumor.

Class 4: Contrast-enhanced part of the tumor, excluding the necrotic center.
The experts segmented the edema (Class 2) from T2 Weighted, and then reviewed its extension
with T2 FLAIR. Initially this class contains all the other structures, which are relabeled in the
following steps. Afterwards, the gross tumor core (Class 2 + 3 + 4) is found by investigating the
hyper-intense lesions in T1 Contrast Enhanced (for the high grade glioma case) and in T2 Weighted
and the hypo-intense lesions in T1 Weighted. The enhanced part of the tumor can be found by
comparing the tumor core with T1 Contrast Enhanced, considering the T1 Weighted enhancing
rim and excluding the necrotic core. The necrotic core (Class 1) is identified by the low intensity
structures inside the enhancing rim of T1 Contrast Enhanced. Finally, the non-enhancing part
(Class 3) is made up by the parts of the gross tumor core that neither belong to the enhancing
core nor to the necrotic center.
However, the non-enhancing class is sometimes overestimated. Thus, from BraTS 17 on, it is com-
bined with the necrotic class, producing the final three classes: Necrotic/Non-Enhancing Tumor,
Edema and Contrast Enhanced Tumor.

Nonetheless, these are not the classes used for the BraTS evaluation. For the experiments, they
propose three regions and compute their evaluation measures on each individually. The first class
is Whole Tumor, which contains the entirety of the tumor. The second class is Tumor Core, which
contains all parts but the edema. The last class contains only the active tumor, that is, the contrast
enhanced part (without the necrotic area). The four original classes and the binary regions are
presented with an example in Figure 1.4.

We also use these same regions for our evaluation, which we perform using two pieces of segmenta-
tion software. The first one, DeepMedic, was designed by the first place winner of BraTS 17. Given
the four different brain MRI scans as input, DeepMedic uses a multi-scale three-dimensional Deep

Table 1.1: Color mapping of T1 Weighted, T2 Weighted and T2 FLAIR with respect to different
tissues3.

Tissue T1 Weighted T2 Weighted T2 FLAIR
White Matter Bright Dark Dark

Cerebrospinal Fluid Black White Black
Inflammation Dark Bright Bright

3



1. Introduction

Necrotic
Edema
Non-Enhancing Tumor
Contrast Enhanced Tumor

Whole Tumor

T2 FLAIR

Tumor Core

T2 Weighted

Active Tumor

T1 Contrast

Figure 1.4: [Best viewed in color] Classes of tumor for patient 1 from BraTS 13. In the first
picture all four classes are superimposed on T1 Weighted, even though the non-enhancing tumor is
very small. On the right, the three regions for the evaluations of the tumor segmentation. The first
region, Whole Tumor, can be mostly identified in T2 FLAIR, while Tumor Core and Active Tumor
can be respectively determined in T2 Weighted and T1 Contrast Enhanced. This representation
is inspired by Bakas et al. [9].

Convolutional Neural Network to achieve brain lesion segmentation. The radiology department of
the University Hospital of Cologne used a clinical evaluation [36] on DeepMedic to train the neural
network they currently use for this purpose. However, since the model was created 2017 and it
was trained on the BraTS 2015 data, we decided to train it again using the BraTS 2019 data set.
More information on how the model was trained can be found in Section 6.3.

To exhaustively test our results we also evaluate our mappings using another tumor segmentation
software called HD-GLIO, which is based on nnU-Net, a deep learning framework created by the
second place winner of BraTS 18. The nnU-Net method can not only be used for finding tumors
in the brain, but also in many other organs.

1.1.2 Preprocessing
In the field of tumor segmentation the images produced by an MRI scanner need to be preprocessed
before being analyzed. Although the BraTS images used in this paper are already preprocessed,
we would like to give a short summary of the process.

A first important step is to make sure that all images have the same resolution, that is, they need
to have the same voxel size. A voxel is a unit of three-dimensional graphic information. The
images from BraTS are processed to have a voxel size of 1mm3.

Skull stripping is a very common procedure that removes the skull from the MRI scans and
normalizes the image. This is necessary to ensure that the software is able to focus on the tissue.
Commonly used software is BET from FSL [39, 21] and HD-BET [18]. This process creates a
brain mask, which is a three-dimensional array that represents with zeros the background, and
with ones the brain voxels. This is generally used as input for tumor segmentation software, or is
applied to the input MRI such that the background is zero.

Additionally, it is beneficial if the scans belonging to a patient are aligned such that it is possible
to see common aspects and eventual differences. This alignment process is called registration. The
BraTS images have been co-registered with respect to the same anatomical template.

4
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1.2 Related Work

We are not the first to apply clustering on MRI images [33, 11, 29, 10]. In fact, clustering has
been used as a resource to achieve brain tissue segmentation, which is the process of distinguishing
the different tissues of the brain. In particular, Caldeira et al. [10] use k-means and Expectation-
Maximization to achieve this purpose. By contrast, in our work we focus on hierarchical clustering
algorithms, because we believe that they more accurately capture the coloring structure of each
tissue. However, our purpose extends beyond tissue segmentation and to the best of our knowledge
we are the first to involve clustering for MRI translation.
Nonetheless, the general image-to-image translation problem for two-dimensional images has been
extensively studied. In 2017, Pix2Pix [20] was proposed: A neural network model able to learn the
mapping between any two related images (see Section 5.1). This paper sparked a lot of interest and
many repositories with a similar purpose as ours appeared on GitHub4,5,6,7. Some, even with the
same purpose8. In this particular project MRI translation is only stated as an objective, and the
work on this repository has never been completed. Even though Pix2Pix (and similar networks)
have been used in the field of medical imaging, we found no evidence of literature mentioning or
conducting an evaluation on MRI translation.

4https://github.com/tychovdo/RevGAN
5https://github.com/imatge-upc/3D-GAN-superresolution
6https://github.com/arnab39/FewShot_GAN-Unet3D
7https://github.com/neoamos/3d-pix2pix-CycleGAN
8https://github.com/ravnoor/MRI-GAN
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Clustering 2

This chapter presents the clustering algorithms adopted in our work both in theory and in prac-
tice. An evaluation of our clustering methods follows in Chapter 3, and some illustrations for all
algorithms discussed here are provided in Chapter 3 and Appendix A.

Conceptually speaking, clustering is the act of partitioning data points into groups such that similar
points belong to the same group. If each three-dimensional pixel of an MRI scan represents a data
point, then we can cluster these data points by their color in order to identify the different tissue
types of the brain. This is due to the fact that different tissues assume distinct colors depending
on the chosen sequence method (see Table 1.1). Thus, clustering algorithms have the potential
to detect brain tissues. Additionally, we also want to capture different shades of color inside each
tissue, which can be achieved using hierarchical clustering algorithms. In this chapter, we present
three different hierarchical clustering algorithms, two of which are based on k-means.

2.1 Data Dimensionality

Each brain scan is composed of 240 × 240 × 155 ≈ 9 million three-dimensional pixels. Around
80–90% of the scan consists of the background, while the brain matter accounts for roughly one
to two million pixels. When clustering, we may either interpret each pixel as a four-dimensional
coordinate (three spatial dimensions and the color), or as a (one-dimensional) color value. We
believe that excluding the spatial information and considering only the color should be the correct
approach, since similar tissues assume similar colors in the different scans, and tissues of the same
type are not necessarily spatially connected. This means that the three-dimensional matrix of
pixels can be transformed into a one-dimensional array without losing any relevant information.

The execution time of most clustering algorithms heavily depends on the dimensionality. Thus,
an additional benefit of omitting the spatial information is a significant speedup compared to
multi-dimensional clustering. Although we are not considering spatial data in the final version of
our implementation, we did consider it during earlier stages of our research by using a weighted
distance function, such that the spatial distances are less relevant than the color. The clustering
results are worse than a pure color clustering, as can be seen in Section 3.3.

2.2 k-means Clustering

Lloyd’s k-means clustering algorithm [27] is one of the most popular unsupervised learning methods,
and is a heuristic for the k-means clustering problem.

7



2. Clustering

Definition 2.1 k-means Clustering
Let x ⊆ Rd be a set of d-dimensional points, and let S = {C1, C2, . . . , Ck} be a partition of x. For
each Ci, let µi =

1
|Ci|

∑
xj∈Ci

xj be its cluster center (i.e., µi is the mean of the points in Ci).
The k-means problem consists in finding a partition S that minimizes the sum of within-cluster
sum of squares (i.e., cluster variance), which is formally defined as

k∑
i=1

∑
xj∈Ci

∥xj − µi∥22. (2.1)

The problem is NP-hard for k ≥ 2 [3], and oftentimes efficient heuristic algorithms are used to
obtain locally optimal solutions. There exist algorithms that achieve constant approximation rates,
such as the primal-dual 6.357-approximation algorithm by Ahmadian et al. [2].
In the one-dimensional case, an optimal solution to the k-means problem can be found in polyno-
mial time by exploiting the fact that the optimal clusters form consecutive intervals in the sorted
list of points. This allows efficient dynamic programming solutions like k-means1d1, which is based
on work by Wu [43] and Grønlund et al. [15] and finds the optimal clustering in O(kn+n lg n) time.
We use this implementation whenever we deal with one-dimensional data. For multi-dimensional
data we use k-means++ [5], which uses Lloyd’s algorithm with a smart initialization strategy and
computes a O (log k)-approximation of the optimal clustering.

2.2.1 k-means1d
As mentioned earlier, k-means1d uses dynamic programming to compute an optimal k-means
clustering in the one-dimensional setting. Dynamic programming is the art of solving a problem
by breaking it down into smaller subproblems that can stored for later use. This is many times
done with the use of tables.
Let us consider x ⊆ R sorted in non-descending order, and let k be the desired number of clusters.
In this case the problem is divided into smaller tasks by computing the optimal clustering for each
number i = 1, . . . , k of clusters, and each prefix x1, . . . , xm of x, where m = 1, . . . , n.
We use a k × n matrix D that keeps track of the cluster costs, where the optimal cluster cost for
the prefix x1, . . . , xm and partition size i is saved in D[i][m]. We can fill the matrix by exploiting
the function sumsq(j,m), which returns the cost of clustering points xj , . . . , xm into one cluster,
i.e., the sum of squared distances for xj , . . . , xm to their mean µj,m =

xj+···+xm

m−j+1 .

sumsq(j,m) =

m∑
ℓ=j

(xℓ − µj,m)2

=

m∑
ℓ=j

(x2
ℓ + µ2

j,m − 2xℓµj,m)

=

 m∑
ℓ=j

x2
ℓ


︸ ︷︷ ︸

βj,m

+(m− j + 1)µ2
j,m − 2µj,m

m∑
ℓ=j

(xℓ)︸ ︷︷ ︸
αj,m

In order to answer sumsq(j,m) for arbitrary j and m in constant time, we first precompute the
values α1,q and β1,q for 1 ≤ q ≤ n. It is easy to see that the total precomputation time is O (n),
since each value αq (and βq) can be computed in constant time as αq−1 + xq (and βq−1 + x2

q).
Since we have αj,m = α1,m − α1,j−1 (analogously for βj,m), and µj,m = αj,m/(m − j + 1), the
precomputed values are sufficient to determine sumsq(j,m) in constant time.
Each entry D[1][m] of the first row of this matrix, where there is only one cluster, can be computed
in constant time as D[1][m] = sumsq(1,m). The first row is the ground for the following recurrence
relation for i > 1:

D[i][m] =
m
min
j=1

D[i− 1][j − 1] + sumsq(j,m). (2.2)

where D[i− 1][j − 1] is the optimal cost for clustering the prefix x1, . . . , xj−1 into i− 1 clusters.
1https://github.com/dstein64/kmeans1d
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n

n

m

j

Ci

rowmin

k

n

D

i

m

D[i][m] k

n

T

i

m

T [i][m]

Figure 2.1: [Best viewed in color] Relationship between the Ci, D and T tables. Finding the
minimum j in row m in table Ci is equivalent to computing D[i][m] and finding T [i][m].

In this case xj is the first point of the last cluster recorded until now. We save the index j that
yields the minimum in Equation 2.2, with ties broken by choosing the smallest j, in an auxiliary
table T , such that we store the start and end indices of each cluster for each partition i.

T [i][m] = arg
m
min
j=1

D[i− 1][j − 1] + sumsq(j,m)

Finally, once both tables are built, we find the cluster centers and the assignments for k by
backtracking the table T .
The space occupied by the tables is O (k · n), while the running time is O

(
k · n2

)
because for each

cell of the matrix we take O (n) computation time to find the optimal j. However, both time and
space complexity can be reduced. We focus on the time and refer to Grønlund et al. [15] for the
reduction of space.

Now we reduce the time spent to compute each row of the table to linear time. Let Ci be an n×n
matrix, where Ci[m][j] contains the cost of the optimal clustering of x1, . . . , xm into i clusters
where the rightmost (highest mean) cluster contains exactly the points xj , . . . , xm. Using D and
sumsq, we can define Ci[m][j] as:

Ci[m][j] = D[i− 1][j − 1] + sumsq(j,m)

Recalling Equation 2.2, we may in turn define D[i][m] by using the table Ci:

D[i][m] =
m
min
j=1

D[i− 1][j − 1] + sumsq(j,m) =
m
min
j=1

Ci[m][j].

This means that, instead of computing the recurrence relation in Equation 2.2, we can build
D[i][m] by performing computations on the Ci table. The relationship between the tables is shown
in Figure 2.1: Each row of the Ci matrix represents the optimal cost up to a certain j, so if we
find the minimum-cost j for every row, then we have computed D[i][m] and T [i][m] of every m
with respect to i, i.e., row i of both matrices.
Now we are left with the problem of finding the minimum in each row of the Ci matrix. We use the
SMAWK [1] algorithm, which efficiently solves exactly this problem for totally monotone matrices.
Definition 2.2 Matrix Monotonicity
A matrix is monotone if the minimum of any row always occurs at an index that is greater
than or equal to the index of the minimum of the previous row. A matrix is said to be totally
monotone if each 2×2 submatrix is monotone i.e., the minima of the rows are not in the bottom
left and in the top right of the matrix.

Wu [43] shows that the Ci matrix is indeed totally monotone.
We will not explain the SMAWK algorithm in detail, but give a brief high-level overview of the
algorithmic idea. First, the matrix is reduced by creating a stack of columns and progressively
removing the ones that cannot have a minimum. Afterwards, it calls the algorithm recursively on
the odd-indexed rows and once the minima for these rows are found it uses interpolation to find
the minima of the even-indexed rows.

9



2. Clustering

The algorithm takes O
(
c(1 + log( rc ))

)
time to compute the minima of all rows of an r× c matrix,

which equals O (n) time for our n × n matrix Ci. Note that we do not have to precompute or
physically store the matrix Ci, since we can simulate constant time access to it by exploiting
already computed entries of D and the function sumsq. Since we run the SMAWK algorithm
on k matrices, the total computation time is bounded by O (k · n). Since we required the data
points to be sorted, the time bound of k-means1d is O (n log n+ k · n). The working space with
the optimization by Grønlund et al. [15] is bound by O (n).

2.2.2 k-means++
As mentioned earlier, one of the most popular heuristics for multi-dimensional k-means is Lloyd’s
algorithm [27]. However, it has the downside that the solution quality heavily depends on the ini-
tialization, and (in case of a poor initialization) it may produce results that are arbitrarily worse
than the optimal solution. The algorithm k-means++ [5] obviates this problem by providing a
smart initialization that chooses the initial cluster centers by selecting data points with a probabil-
ity that is inversely proportional to the square of their distance to the already initialized centers.
Thus, the first centers are likely to be points that have great distance from each other, yielding a
better convergence. The steps of the k-means++ algorithm are described in Algorithm 1, and in
Figure 2.2 we provide an example for three clusters and six points.

In practice, we can draw a data point from the probability distribution in Step 1c by using a
uniform random number generator and the prefix sums γi =

∑i
ℓ=1 D(xℓ)

2. We simply draw a
value q ∈ [0, γn) uniformly at random, and then find the smallest index i with γi > q. We return
xi as the drawn data point.
After initialization, this algorithm corresponds to Lloyd’s method, which is depicted in Figure 2.2b.
For completeness, we also provide implementations for two additional initialization methods: ran-
dom center initialization and initialization with given centers.

Algorithm 1 k-means++
Input: Data set x of length n and dimension d, a number of clusters k.
Output: A list of length n representing the cluster assignment with k different labels, a list of k
centers.

1. Initialize the centers:

a) The first center is chosen uniformly at random among the data points.
b) For each point xi in the data set, compute the smallest Euclidean distance between the

point and the centers cj that have already been chosen:

D(xi) = min
j=1
∥xi − cj∥2.

c) Choose the next center from the existing data points, where each point xi is sampled
with probability:

p(xi) =
D(xi)

2∑
xj∈x D(xj)2

.

d) If k centers have been assigned, then stop. Otherwise, go to Step 1b.

2. Assign each point of the data set to their closest center. All points assigned to one center
build a cluster.

3. For each cluster, compute the centroids: Each centroid is given by the mean of the data
points assigned to that clusters. The centroids become the new centers.

4. Compute the so called Frobenius norm, which is the sum of squared differences between the
old centers and the new centroids.

5. Convergence check: If the Frobenius norm is smaller than a certain value (10−4), then stop.
Otherwise, go to Step 2 until a predefined number of iterations is reached (100).

10
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(a) A possible initialization of k-means++ for k = 3.
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Figure 2.2: [Best viewed in color] A full run of k-means++. In (a) we present the center
initialization according to the k-means++ algorithm. The first center is chosen at random, then
the distances of each point to the closest center are recomputed and a new center is chosen according
to the squared distribution of the squared distances. Once all centers have been initialized, we
apply Lloyd’s method (b). First, we find the closest centers for each data point. The points
assigned to one center become a cluster and the cluster centers are recomputed as the center of
mass of their points. The process is repeated until the centers converge.

2.3 Agglomerative Clustering

In this section, we discuss hierarchical agglomerative clustering, an algorithm to produce a tree
that represents the distance relationship between the points. The algorithm proceeds in a bottom-
up manner: It starts with all data points as leafs, and then creates new nodes by merging the two
closest clusters in each iteration, until there is only one single cluster. The most common data
structure used for this purpose is a dendrogram.
Definition 2.3 Dendrogram
A dendrogram is a binary tree where each node represents a cluster, i.e., the leafs underneath a
node are exactly the points that belong to the corresponding cluster.

Note that we use a simplified definition of dendrogram in which we omit the distance labels on
edges. Let us consider a binary dendrogram produced by hierarchically clustering n data points.
If we draw the dendrogram in an n-level layout such that level n contains all leaves, and all other
levels contain exactly one node (see Figure 2.3a), then we can find a clustering for any k ≤ n by
cutting the tree horizontally, as shown in Figure 2.3b.
In practical applications, we oftentimes know a minimum number kmin of clusters that we might
be interested in. In such cases, the topmost kmin− 1 levels of the dendrogram are irrelevant, since
we would only horizontally cut the dendrogram below the (kmin − 1)-th level. Therefore, in this
work we generalize dendrograms to forests of (not necessarily binary) trees. The trees are not
necessarily binary because for some other clustering methods we allow merges of multiple clusters
in each iteration, which yields non-binary trees.

So far, we only stated that in each step of the hierarchical agglomerative clustering we merge the
two closest clusters, without specifying the distance measure we use to determine them. In fact,
the distances between the clusters can be computed with a multitude of linkages and metrics. The
metric is used to compute the initial distances between the actual data points. The linkage is
a function that computes the distances between a new cluster (i.e., a node created by a merge)
and each of the other clusters and data points. We believe that the most adequate linkage for
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Figure 2.3: [Best viewed in color] A dendrogram for n = 5 and the possible cuts that can be
performed to retrieve clusterings of size 1, . . . , n.

this project is the Ward linkage, also known as Ward’s method, which corresponds to the k-means
objective function and aims at minimizing the within-cluster variance. Our choice is based on the
fact that k-means is a very common choice for clustering problems, and we also use it for our other
clustering methods, which means that choosing the corresponding linkage makes the clustering
methods comparable. However, we also conduct an empirical evaluation of the linkage methods in
Section 3.4, and according to our results Ward is actually the best linkage for our use case.

We present the complete process in more detail in Algorithm 2 and Figure 2.4 using Ward’s method
and the traditional squared Euclidean distance metric.

Algorithm 2 Agglomerative Clustering with Ward’s Method
Input: n data points of dimension d, a number of clusters k.
Output: A dendrogram represented in an (n − k) × 2 matrix, where each row denotes a merge
and the columns denote the node indices that were joined at each step (example in Figure 2.4).

1. Create one cluster per data point, each numbered between 1 and n.

2. Compute the pairwise distances between the points with the squared Euclidean distance.

3. For each i ∈ {1, . . . , n− k}:

a) Find the two closest clusters, I and J .
b) Merge I and J . The indices of the merging clusters I and J are stored in row i of the

dendrogram matrix. The new node created by merging the clusters has index i+ n.
c) Compute the distance between the newly merged cluster I ∪ J and every other cluster

or data point K. For Ward, this is:

d(I ∪ J,K) =

√
(nI + nK)d(I,K) + (nJ + nK)d(J,K)− nKd(I, J)

nI + nJ + nK
,

where nI , nJ , nK are the number of elements in the respective clusters and
d(I,K), d(J,K), d(I, J) are the current distances.

There are two different approaches of providing the input for hierarchical clustering [4]: the stored
matrix approach and the stored data approach. The stored matrix approach requires the upper
triangle of a symmetric matrix of pairwise distances between the points, while the stored data
approach takes the data points as input.
Müllner [34] implemented specific methods for each approach, evaluated the algorithms with re-
spect to different linkages, and built the package fastcluster2, which applies the best algorithm
according to the data approach and the linkage. He also improved the search step (Step 3a) by
using a heap, which makes the repeated searches faster.

The asymptotic running time of this implementation with Ward linkage is Θ(n2), while the space
complexity depends on the input approach. The stored matrix approach requires Θ(n2) of memory,

2http://danifold.net/fastcluster.html
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1. n = 5 Clusters
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6. Merge Step: 2 Clusters
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3 4 // The points 0.65 (3) and 0.75 (4) are merged , creat ing node 6
5 6 // The point 0.9 (5) and 6 are merged , creat ing node 7
1 2 // The points 0.1 (1) and 0.4 (2) are merged , creat ing node 8

Figure 2.4: [Best viewed in color] Agglomerative procedure to obtain k = 2 clusters using Ward’s
method. At the beginning we compute the distances using the squared Euclidean metric. Then,
we merge the two closest clusters and compute the distances to the new node. We repeat the
process until we obtain k = 2 clusters. Below, the dendrogram obtained by the given example
represented by an (n− k)× 2 matrix. Each row represent a merge, and the two elements are the
cluster indices of the merged elements.

while the stored data approach requires Θ(n · d), where d is the number of dimensions. This is
achieved by using a dynamic nearest neighbor approach for the search of the smallest distance
that also handles the addition and removal of clusters to and from the dendrogram. However, the
stored data approach is only provided for the linkage methods single, centroid, median, and
Ward, and it only accepts the Euclidean distance as metric for the latter three.

2.4 Nesting Clustering

In this section, we describe a hierarchical clustering method that, similarly to agglomerative clus-
tering, uses a bottom-up approach, but merges more than two clusters in each iteration. It was
first introduced by Lin et al. [26].
Their paper provides a generalized approximation strategy for incremental algorithms, which can
also be applied to hierarchical clustering algorithms. To better explain the nature of the problem,
the authors propose the example of a company that has a set of n locations where they could
build new facilities. Initially, the company wants to open k ≤ n facilities, with the plan to open
additional facilities later. A good choice for the initial k facilities should not only be profitable
immediately, but it should also remain profitable even when adding further facilities in the future.
The output of an incremental algorithm for this problem is an ordering of the n facilities according
to their suitability. Opening the first k facilities of the ordering for any k is then close to the
optimal choice of k facilities.
In hierarchical clustering we have a similar situation. Initially, when k = n, there are n clusters
and the k-clustering corresponds to the data points. In each iteration a selected pair of clusters
is merged, obtaining k-clusterings of smaller k, until we reach one single cluster. An important
property of incremental problems is that for any k, k′ with k < k′ the solution obtained with k is
ordered with respect to the k′ solution, where the concept of ordering is specific to the problem.
In the hierarchical clustering case a merge occurs in each iteration, and thus the k′-clustering is
always a refinement of the k-clustering. Given an objective function for the k-clustering algorithm,
we want to ensure that its cost for any k is close to the cost of the optimal k-clustering. Thus, we
introduce the concept of α-competitiveness. An algorithm is said to be α-competitive if the cost
of the k-clustering is no more than α times the cost of the optimal k-clustering for all values of k.

We first give a brief description of AltIncApprox (the algorithm by Lin et al., see [26, Algorithm 2])
applied to hierarchical k-means. First, we compute a clustering with an α-approximation algorithm
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Figure 2.5: Algorithm to find interesting cluster amounts for six two-dimensional points. Let the
number of maximum clusters be six and the minimum number be one. Starting from five, for each
size we compute a clustering and the cluster cost (data points of equal color belong to the same
cluster). Then, we divide the costs into intervals with cost in range [0, 20), [20, 21), [21, 22), [22, 23).
For each interval we pick the smallest cluster amount, which gives us the following numbers:
[4, 2, 1].

for each k ∈ {1, . . . , n}, where n is the number of data points. For each clustering we compute
its cost, and afterwards assign the different clusterings to intervals according to their costs (where
the interval sizes grow exponentially with higher associated costs). For each interval, we choose
the clustering with the smallest k. These steps correspond to AltIncApprox, Steps 1 to 4 [26] and
produce a list of interesting choices of k. We describe the details of our practical implementation
for this part of the algorithm in Algorithm 3 and with an example in Figure 2.5.

Algorithm 3 Finding Interesting Cluster Amounts for Hierarchical Clustering
Input: n data points of dimension d, a maximum (e.g., kmax = n) and a minimum number of
interesting clusters (e.g., kmin = 1).
Output: A list of interesting cluster amounts.

1. For each number of clusters k ∈ {kmax, . . . , kmin}:

a) Compute a clustering with k-means (using k-means++ or k-means1d, depending on d).
b) Compute the clustering cost according to the k-means objective function (Equation 2.1).

2. Sort the clustering costs in non-descending order.

3. According to their cost, group the different choices of k into intervals [0, 20), [20, 21)
[21, 22), . . . , [2t−1, 2t), where t is chosen such that the highest present clustering cost z satisfies
z ∈ [2t−1, 2t).

4. For each of these intervals, choose the smallest k whose cost lies in the interval.

For the special case of k-means1d some steps of Algorithm 3 are superfluous. Since a table
with all the cluster costs is created (Section 2.2.1), we run a clustering for the largest possible
size (maximum number of clusters) and then retrieve the cluster costs from the table instead of
performing Step 1. Additionally, Step 2 is redundant because we have an optimal clustering for
each cluster size, and the cluster costs increase as the number of clusters decreases.
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Afterwards, the list of cluster amounts is used as input for the nesting routine, which ensures
compatibility among the chosen clusterings. We describe our nesting routine in Algorithm 4,
which corresponds to AltIncApprox, Steps 5 to 6 [26]. The routine is also presented with an
example in Figure 2.6, where we show that the result of this algorithm is also a dendrogram.

Algorithm 4 Nesting Routine for Hierarchical Clustering
Input: n data points of dimension d, a list of cluster amounts [k1, . . . , km].
Output: A dendrogram represented as a list of length equal to k1 + k2 + . . .+ km, which contains
variable length lists that represent the assignments (example in Figure 2.6).

1. Create a clustering S1 with n clusters, each with the respective data point as center.

2. From the list of cluster amounts to compute, take the largest not yet computed number ki
and compute clustering S2 (using k-means++ or k-means1d, depending on d).

3. Make the two clusterings compatible: Assign each center of the bigger sized clustering (S1)
to the closest center of the smaller sized clustering (S2), which results in a clustering Snew
of size k ≤ ki. The data points of this clustering are the centers of S1, while the centers of
Snew are (possibly a subset of) the centers of S2.

4. Recompute the centers of Snew as the average of the centers assigned to each cluster.

5. If we have processed all possible ki, then stop. Otherwise, let S1 ← Snew and continue with
Step 2.

Lin et al. [26] show that if the problem satisfies the (γ, δ′)-nesting property then the AltIncApprox
algorithm computes a solution with a clearly defined competitive ratio.
Definition 2.4 (γ, δ′)-nesting (Manuscript from Anna Arutyunova and Melanie Schmidt)
Let P be a set of points, let S1 and S2 be two clusterings and let a1 and a2 be the functions that
map the points to the respective cluster centers of S1 and S2.
A k-clustering problem satisfies the so called (γ, δ′)-nesting property for reals γ ≥ 1, δ′ > 0 if for
any two solutions Z1 = (S1, a1) and Z2 = (S2, a2) with |S1| > |S2|, a solution Z = (S, a) can be
computed such that

• Z1 and Z2 are hierarchically compatible, i.e., for all c ∈ S2 there exists a c′ ∈ S such that
for all x ∈ P with a2(x) = c it holds that a(x) = c′,

• cost(P,Z) ≤ γ · cost(P,Z1) + δ′ · cost(P,Z2), and
• |S| ≤ |S2|

In the manuscript by Anna Arutyunova and Melanie Schmidt it is also shown that the k-means
cost function satisfies the (3, 2)-nesting property. In their analysis they choose the mapping a(x) to
be the one defined in Step 3 of Algorithm 4. In order to show the competitive ratio of hierarchical
k-means we need the following theorem:
Theorem 2.1 Competitive ratio for (γ, δ′)-nesting (Theorem 2.5 [26])
If (γ, δ′)-nesting holds for reals γ ≥ 1, δ′ > 0, and an α-approximation algorithm exists for the
problem, then AltIncApprox (γ, δ′, α) computes an incremental solution with competitive ratio
4γδ′α.

Thus, using k-means1d in AltIncApprox results in a hierarchical clustering algorithm with a com-
petitive ratio of 24, whereas using k-means++ results in a competitive ratio of 24 · O (log n). Note
that our implementation of Algorithm 3 and Algorithm 4 does not strictly correspond to the orig-
inal AltIncApprox algorithm. Our modifications are that we allow arbitrary parameters kmin and
kmax for Algorithm 3 (instead of fixed values kmin = 1 and kmax = n), and that we add Step 4 to
Algorithm 4. We believe that these modifications produce better results in practice.
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// Depth 3 : Matching from 6 to 4 Cluster
3 4 // Green (1) i s matched with green (4) of the l e v e l below
3 5 // Pink (2) i s matched with pink (5)
3 2 6 // Purple (3) i s matched with purple (2) and l i g h t blue (6)
3 1 3 // Blue (4) i s matched with blue (1) and yellow (3)
// Depth 2 : Matching from 4 to 2 Cluster
2 1 4 // Blue (1) i s matched with green (1) and blue (4)
2 2 3 // Pink (2) i s matched with pink (2) and purple (3)
// Depth 1 : Matching from 2 to 1 Cluster
1 1 2 // Blue (1) i s matched with blue (1) and pink (2)

Figure 2.6: [Best viewed in color] Nesting routine for six points and the given cluster list: [4, 2, 1].
We create a six-center clustering by assigning each data point to a center and create another
clustering of size four. We make them compatible by assigning each center of the larger clustering
to a center of the smaller clustering, and recompute the centers as the average of centers for each
cluster, which will be the input for the next step. We produce a clustering for the next largest size
and proceed until all the clusterings in the list have been made compatible. Below, we provide the
nesting dendrogram of length 4+2+1 = 7 for the given example. Each row represents one cluster
of one level. The first element of each row indicates the depth, while the other elements of the row
represent the clusters of the level below that are being merged together.
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Finally, we discuss the space consumption of the output dendrogram and the asymptotic worst-case
execution time for this algorithm.
Let [k1, . . . , km] be the sorted clustering list, where k1 is the largest number. The total size of
the dendrogram is computed by considering the sum of the list elements (because of the depth
indicator) plus the number of cluster indices for each level below. Thus, the total size of the
dendrogram is

m∑
i=1

ki + n+

m−1∑
i=1

ki = km + n+ 2

m−1∑
i=1

ki.

The time spent computing the nesting routine for one-dimensional data is O (n log n) for the sorting
and O (k1 · n) for the initial run of k-means1d, since we only compute it for the largest ki. Then,
for each number of clusters ki: We retrieve the cluster centers by backtracking (O (n)), we match
the clusters, which takes O (ki−1 · log ki) (where ki−1 = n in case i = 1) and recompute the clusters
O (ki). Note that the O (n · log k1) time needed for the first matching step is dominated by the
initial sorting time. In practice, these steps take a relative small time with respect to the initial
clustering.

O (Nesting1d) = O (n log n) +O (k1 · n) +O (m · n) +O
(∑m

i=2
ki−1 · log ki

)
= O (n log n) +O (k1 · n) +O (m · n) +O (m · k1 · log k2)

In the practical case where m = O (k1) and k1 = O (polylog(n)) (k1 is polynomial in log n), the
term becomes

O (Nesting1d) = O (n log n) +O (k1 · n)= O (n log n+ n · k1) ,

which is the asymptotic complexity of k-means1d.

2.5 Leveled Clustering

In this section, we present another class of hierarchical clustering algorithms, where we can choose
the number of levels and the number of clusters for each level. We call this type of clustering
leveled clustering.
The previously described hierarchical clustering methods produce dendrograms with an arbitrary
number of levels (or n levels). The aim of our clustering methods is to distinguish between
different tissues in the brain. Additionally, we also want to produce different shadings inside each
tissue. However, it is not necessary to have many levels to have some color distinction inside the
main tissue clusters. Thus, given cluster amounts [k1, . . . , km] sorted in non-ascending order, we
produce a (bottom-up) dendrogram with m levels, where the level at depth m−i+1 has ki clusters.
The bottom-most level of the dendrogram contains the data points, which are then progressively
grouped into fewer but larger clusters as we proceed to higher levels.

The dendrogram produced by agglomerative clustering has one level for each value q with 1 ≤ q ≤ n.
To produce a leveled clustering we cut the dendrogram above levels k1, . . . , km, which creates the
desired number of levels.

Conveniently, the nesting algorithm can already produce a dendrogram from a given list of cluster
amounts. In fact, we can take the second part of the algorithm (Algorithm 4, Figure 2.6) and use
our list of choice as input.

Additionally, we discuss a leveled clustering method that is based on k-means and uses a top-
down strategy. Top-down hierarchical clustering algorithms are referred to as divisive clustering
algorithms. An example is bisecting k-means [38]. This divisive clustering method produces a
binary dendrogram similar to the one created by agglomerative clustering, but in a top-down
manner. We first apply k-means with k = 2 on the full data to create two clusters, and then
recursively refine each clusters by running k-means (again with k = 2) until each cluster consists
of a single data point. In our version of this algorithm we may choose a parameter k > 2 for
each refinement step, as outlined in Algorithm 5 and visualized in Figure 2.7. The input of this
algorithm is also a list of cluster amounts [r1, . . . , rm], but differently from the bottom-up lists used
for agglomerative and nesting clustering, it does not need to be sorted as the division in clusters is
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n = 6

k = 2

n = 6

k = 2

k = 2

n = 6

k = 2

k = 2

1. 2. 3.
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// Depth 2 : Divide the c lu s t e r above into two parts
2 1 2 3 // Blue (1) , purple (2) and yellow (3) are one c lu s t e r
2 4 // Green (4) i s one c lu s t e r
// Depth 1 : Second part of the f i r s t d iv i s i on creates c l u s t e r 2
1 5 6 // Cluster with pink (5) and l i g h t blue (6)
// Depth 2 : Divide the c lu s t e r above into two parts
2 5 // Pink (5) i s one c lu s t e r
2 6 // Light blue (6) i s one c lu s t e r

Figure 2.7: [Best viewed in color] Leveled k-means routine for six points and recursive cluster
amounts [2, 2]. At the beginning all points belong to the same cluster, then a clustering of the
first size is created. For each portion of the data, we build a new clustering of the next size.
Below, the k-means dendrogram of length 2+ 2 · 2 = 6 for the given example. Since the algorithm
is recursive, the dendrogram levels are also printed in a recursive manner. The first element of
each row identifies the depth, while the remaining elements of the row are the data point indices
belonging to that cluster.

Algorithm 5 Leveled k-means
Input: n data points of dimension d, a list of recursive cluster amounts [r1, . . . , rm].
Output: A dendrogram represented as a list of length equal to the number of recursive calls,
which contains variable length lists that represent the assignments (example in Figure 2.7).

1. Compute a clustering with r1 centers.

2. For each cluster l ∈ {1, . . . , r1}:

a) Append a row to the dendrogram that contains the current depth of the recursion, as
well as exactly the identifiers of the data points that belong to cluster l.

b) If m > 1, then recursively run leveled k-means on the data points belonging to cluster
l, with the cluster amounts [r2, . . . , rm].

applied recursively to each amount. In this case, the number of clusters at depth i is expressed as∏i
j=1 rj . As an example, let us consider the list [2, 4, 2] of recursive clustering amounts. The data

points are first divided into two large clusters, then each cluster is divided into four medium-sized
clusters, and finally each medium-sized cluster is divided into two small clusters. In this case, at
depth one we have 2 clusters, at depth two we have 2 · 4 = 8 clusters, and at depth three we have
2 · 4 · 2 = 16 clusters, resulting in the bottom-up list [16, 8, 2] of clustering amounts.

Lastly, we compute the space needed to store the dendrogram, and the worst-case asymptotic run
time for this recursive k-means approach.
Let [r1, . . . , rm] be the recursive cluster amounts. It is easy to see that in each level we have to
redistribute all data points, i.e., the dendrogram contains each data point exactly once per level,
resulting in n · m stored values. Additionally, at depth i, we have to store

∏i
j=1 rj list headers

(i.e., the first entry of each row, which contains the current depth). Thus, the total size of the
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dendrogram is:

m · n+

m∑
i=1

i∏
j=1

rj

The worst-case asymptotic complexity of this algorithm for one-dimensional data depends on
sorting (O (n log n)) and then applying the k-means1d algorithm recursively on each subportion
(O (k · n)). Let us analyze the time spent for the first two levels:

O (Leveled k-means1d) = O (n log n) +O (r1 · n) + r1 · O
(
r2 ·

n

r1

)
= O (n log n) +O (r1 · n) +O (r2 · n) .

Even though the resulting clusters may have different sizes, the total number of elements for which
the clustering has to be computed on each level is always n. This results in:

= O (n log n) +

m∑
i=1

O (ri · n) .

While Leveled k-means and Leveled Nesting have a similar time complexity, Leveled k-means is
much faster in practice because it runs on smaller portions of the data, which significantly improves
the cache behavior of the algorithm.

2.6 Dendrogram Output and Shaded Labels

As we discussed in Chapter 1 and at the beginning of this chapter, our aim is to cluster MRI scans
to identify the different tissues of the brain and eventually capture a mapping between the different
MRI sequences. We carry out this task using hierarchical clustering algorithms, which are able to
identify the main tissues but also to distinguish different patches of color inside the main clusters.
The hierarchical clustering algorithms presented here have a dendrogram as output. But how can
we use a dendrogram to visualize the hierarchical structure of the clustering? One way to achieve
this is to build labels that represent the shading of the tissues, as shown in Figure 2.8b. Let us
assume that the dendrogram is a forest, where each tree represents one main tissue cluster. We
assign to each of these main clusters the interval [0, 1], which represents the intensity spectrum of
one color. For example, for the color red zero means white, while one means bright red. Then, for
each tree we recursively divide the interval and assign a portion to the children. Finally, when we
reach the leaves, we take the middle of the interval. A representation of the process is shown in
Figure 2.8a.
However, the dendrograms obtained with our hierarchical clustering methods have different struc-
tures (see Figure 2.4, Figure 2.6 and Figure 2.7). Thus, we select the nesting dendrogram to be
our standard and convert the output of the other algorithms accordingly.
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[0.0, 0.017) [0.083, 0.1)

. . .
0.993750.90625

[0.9875, 1.0)[0.9, 0.9125)

. . .

(a) Creation of hierarchical labels by recursively dividing the interval [0, 1]. (b) Hierarchical Clustering
of T1 Weighted

Figure 2.8: [Best viewed in color] Procedure to create shaded labels and example result for
nesting clustering of T1 Weighted of patient 2 (BraTS 19).
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2. Clustering

(a) T1 Weighted (b) T2 Weighted (c) Adjusted T2 Weighted

Figure 2.9: [Best viewed in color] Comparison of the clustering obtained with nesting clustering
for T1 Weighted and T2 Weighted of patient 2 (BraTS 19).

2.7 Cluster Labels Matching

Finally, in this section we describe the strategy that we use to match clusterings computed from
different MRI scans. Let us consider two scans (T1 Weighted and T2 Weighted) and a clustering
method (nesting) as in Figure 2.9. It is easy to see that the blue cluster of Figure 2.9a corresponds
to the green cluster of Figure 2.9b, and thus we wish to convert the clustering of T2 Weighted
such that it is comparable to T1 Weighted (as in Figure 2.9c).
This problem can be transformed into a very common combinatorial optimization problem: the
maximum bipartite weighted matching.
Definition 2.5 Bipartite Graph
A undirected bipartite graph is a tuple G = (A,B,E) with vertices A ∪ B and edges E ⊆ A× B.
Let w : E → R be a function that assigns a weight to each edge, then we call G = (A,B,E,w) a
weighted undirected bipartite graph.

Definition 2.6 Weighted Matching
Given a weighted undirected graph with edges E and weight function w, a matching M ⊆ E is a
set of edges such that no two edges in M share a vertex. The weight of M is the sum of its edge
weights, i.e., weight(M) =

∑
e∈M w(e). We say that M is a maximum weighted matching, if there

exists no matching M ′ with weight(M) < weight(M ′).

The maximum weighted matching problem involves finding a matching of maximum weight in a
graph. For bipartite matching a very popular algorithm is the Hungarian algorithm [22], which has
a O

(
V 3

)
worst-case asymptotic run time. This problem can be visualized as pairing people with

jobs for which there is only one position, and thus is also called the assignment problem. This is
exactly our aim; we would like to match the cluster labels from T1 Weighted to the cluster labels
of T2 Weighted.
To reduce our problem to the maximum weighted matching problem we first need to compute a
contingency matrix, a table that represents the frequency of labels of two clusterings. We compute
it as described in Algorithm 6. Once we obtain a k1 × k2 table, we pad it with zeros to obtain a
square matrix. This matrix represents the weights of a bipartite graph.
The Hungarian algorithm is based on the concepts of alternating and augmenting paths.
Definition 2.7 Alternating Path and Augmenting Path
Let G = (V,E) be a graph with a set of nodes V , a set of edges E and a matching M ⊆ E and let
P = v1, . . . , vk be a path from v1 to vk with vi ∈ V, for 1 ≤ i ≤ k and (vj , vj+1) ∈ E, for 1 ≤ j < k.
We call P an alternating path if it contains alternating edges in M and in E \M . An alternating
path P is an augmenting path if the first vertex v1 and the last vertex vk are not incident to an
edge in M .

Note that if there exists an augmenting path P for a matching M , then this matching cannot be
maximum, because by taking the symmetric difference M ⊕P we obtain a matching of larger size.
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Algorithm 6 Contingency Matrix
Input: A clustering S1 of T1 Weighted and a clustering S2 of T2 Weighted, both of length n.
Output: A two-dimensional matrix that represents the frequency of the labels in the clusterings.

1. Let k1 and k2 be respectively the number of clusters in the first clustering and in the second
clustering.

2. Initialize a k1 × k2 matrix F with zeros.

3. For each i ∈ {1, . . . , n}:

a) Let l1 be the cluster assignment of pixel i in S1.
b) Let l2 be the cluster assignment of pixel i in S2.
c) Increase the value of F [l1][l2] by one.

We present the Hungarian algorithm for bipartite graphs in Algorithm 73 and an example compu-
tation in Figure 2.11. The idea of the algorithm is to start with an empty matching and search
for augmenting paths that would give a better weight. In case one is found, then the matching is
augmented using the symmetric difference.

Algorithm 7 Hungarian Algorithm
Input: A square matrix representing the weights of a bipartite graph G = (A,B,E,w).
Output: A list of tuples representing an assignment.

1. Start with an empty matching M = ∅.

2. Define node weights:

a) Let aj be the node weights for the nodes in A and bi the node weights for the nodes in B
(Figure 2.10).

b) Feasibility rule: Let wij be the edge weight between node i ∈ B and j ∈ A, then the sum
of bi and aj should always be greater or equal than the edge weight (bi + aj ≥ wij).

c) Assign node weights according to the feasibility rule. A common initialization is taking
the largest weight of the incident edges for each node in B, and zero for each node in A.

3. Build a new graph, G∗, where there are only the edges for which bi + aj = wij .

4. If all nodes are matched, terminate. Otherwise, look for an augmenting path in G∗ starting
at a node that is not contained in the matching.

5. If a path P is found, build a new matching with the symmetric difference (M = M ⊕P ) and
go to Step 4. Otherwise, extend G∗:

a) For each edge that is incident to the currently explored nodes in B and that is incident
to the not explored nodes in A compute the unbalance πij = bi + ai − wij .

b) Let δ be the minimum unbalance.
c) Adjust the reachable nodes of B with bi = bi − δ, and the not reachable nodes of A with

aj = aj + δ. The other nodes are left unchanged.
d) Go to Step 3.

3Adapted from lecture slides by Blum (http://tcs.cs.uni-bonn.de/doku.php?id=teaching:ws1920:vl-adval
go).
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Figure 2.10: [Best viewed in color] Transformation from square adjacency matrix to bipartite
graph and creation of the node weights.
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Figure 2.11: [Best viewed in color] Computation of an assignment using the Hungarian algorithm.
The procedure involves selecting a new root and looking for an augmenting path. In case no path
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Clustering Evaluation 3

In this chapter, we assess the performance of our clustering methods. First, we evaluate some k-
means clustering methods and compare different agglomerative clustering linkage functions. Using
our findings, we identify the respectively best k-means and agglomerative method, and finally
assess their accuracy together with nesting. We compare each clustering with the real tissues
of the brain, which have been identified manually by a medical doctor in a process called tissue
segmentation. We have four segmented images (BraTS 13 Patients 1, 2, 3, 5), where each brain
voxel has been classified into one of four tissues: Grey Matter, White Matter, Cerebrospinal Fluid
and Other/Tumour. However, the segmentation is not perfect and there are some gaps between
the tissues.

While the segmentation has been done on BraTS 13 Patients 1, 2, 3, 5, the same patients exist
in BraTS 19 under different patient names. We have run our clustering algorithms on both sets,
but we found some discrepancies in normalization in BraTS 19 and thus we decided to use the
sequences from BraTS 13 for our clustering evaluation.

To have a fair comparison between the segmented and the clustered images, we only use the
points that are not background in the segmented image as input for the clustering. Then, we run
our clustering algorithm of choice. We do not take the shading and the levels described in the
previous chapter into account, but we only create a plain main-tissues clustering. The algorithms
Leveled k-means and Leveled Nesting are based on k-means, and thus we do not present a separate
comparison for them. However, we attach an example of the results in Section A.1.

Although the number of classified tissues is four, we run the clustering methods with three clusters
instead. This is because the class Other/Tumour is not really a color class and can contain different
tissues and part of the tumor, which makes it hard for a clustering algorithm to detect it. However,
we show a comparison of k-means1d with four and three clusters for completeness.

All evaluations but one (Section 3.4) are based on the clustering of the entire three-dimensional
brain, but for simplicity only the middle transverse slice is shown in the figures below.

The custom clusterings have also been postprocessed by mapping them to the segmentation image
with the method described in Section 2.7.

3.1 Evaluation Metrics

In this section, we describe the scores used for our assessment. For all of them (except Rand
index) we use the implementation of scikit-learn1. For all measures described here, a higher value
represents a better clustering.

Precision and Recall. Precision and recall [30] are common measures used in information
retrieval and machine learning. They are computed for each class (in our case, tissue) according
the concepts of true positives, false positives, false negatives, true negatives.

1https://scikit-learn.org/stable/modules/model_evaluation.html
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3. Clustering Evaluation

For completeness, we state their definitions using the Grey Matter class as an example.
• True Positives: pixels that were predicted as Grey Matter, and belong to the Grey Matter.
• False Positives: pixels that were predicted as Grey Matter, but belong to another class.

This error is also called false alarm.
• False Negatives: pixels that were predicted as another class, but they belong to the Grey

Matter. This error is also called miss.
• True Negatives: pixels that were predicted as another class, and actually belong to another

class.
The precision and the recall score are computed according to the formulas below (where TP, FP,
FN, and TN are the numbers of true positives, false positives, false negatives, and true negatives).

precision =
TP

TP + FP
, recall =

TP
TP + FN

Thus, the precision tells us how many of the retrieved instances were actually relevant, and the
recall informs us on which percentage of the relevant instances we managed to collect. Their values
are bounded in range [0, 1].
These measures are computed for each class (in our case the classes are exactly the tissue type),
but since we are in a multi-class environment, we use three different methods to combine them
and create a single score:

• Micro: True positives, true negatives and false positives are computed as the sum of the
values for each class and then the metrics are computed.

• Macro: The metrics are computed for each class and then they are averaged by the number
of different classes.

• Weighted: The metrics are computed for each class and then the average weighted by the
number of true instances for each class is computed.

For example, in our setting the Other/Tumour class is always smaller than the others, and if this
class is not correctly detected, then the result will be a lower precision and recall score in the
macro type than in the weighted type.

Rand Index and Adjusted Rand Index. The simple Rand index takes all the pairs of labels
from the two different clusterings into account and is computed as the number of pairs where the
two clusterings agree over the total number of labels. We compute it as described by Manning
et al. [30].
In more detail, we can build a contingency matrix that describes the relationship between the
segmentation clustering (ground truth) and the current prediction we are examining.
In the contingency matrix we can observe four different situations:

• agree1: pixels that have the same tissue in the truth and the same tissue in the predicted
clustering.

• agree2: pixels that have different tissues in the truth and have different tissues in the
predicted clustering.

• disagree1: pixels that have different tissues in the truth and have the same tissue in the
predicted clustering.

• disagree2: pixels that have the same tissue in the truth and different tissues in the predicted
clustering.

The Rand index is computed as

RI =
agree1 + agree2

agree1 + agree2 + disagree1 + disagree2

,

which has the same meaning as

RI =
TP + TN

TP + TN + FP + FN
.
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However, the concepts of true/false positive and true/false negative are a bit different from the
ones previously described. In fact, here we compute these values in a combinatorial way on the
contingency matrix, and thus this index can account for permutations (up to one). The index has
values in range [0, 1].
We can also compute a new kind of precision and recall using these new values.

The Rand index can then be adjusted for chance for the case in which the two clusterings are
picked at random, creating the adjusted Rand index [16].

ARI =
RI− E [RI]

max(RI) + E [RI]

Its value is bounded in range [−1, 1], with random or independent clusterings having close to zero
scores, and identical clusterings having value one.

Accuracy. This score represents the fraction of samples that have been classified correctly. Let
truth be the manually segmented image and let pred be the predicted result. Then the accuracy
score is defined as:

ACC =
1

n_samples
·

n_samples∑
i

1(truthi = predi).

where 1 is the indicator function, which has value one if the labels are the same and zero otherwise.
The value of the accuracy score is bounded in range [0, 1].

Adjusted Mutual Information Score. Similarly to the adjusted Rand index, the adjusted
mutual information score measures the agreement of the predicted data and the truth, and it is
also adjusted for chance in the same manner. Thus, this score is also bounded above by one and
has value close to zero for random assignments.
The standard mutual information score quantifies the mutual dependence of the two sets and is
related to the concept of entropy of random variables. We refer to the original paper [41] for a
more detailed explanation.

Fowlkes-Mallows Index. The Fowles-Mallows index [13] also uses the concepts of true positives,
false positives and false negatives and can in fact be seen as the geometric mean of the combinatorial
precision and recall:

FM = 2 · TP√
(TP + FP) ∗ (TP + FN)

.

Its score is in range [0, 1].

3.2 Implementation and Experimental Setup

All clustering algorithms have been implemented in C++ 17 according to the specifications de-
scribed in the previous chapter, and are ported to python with Boost.Python2. Even though
we mostly use the clustering algorithms for one-dimensional data, the provided implementation
supports up to four dimensions, and could easily be modified to support an arbitrary number of
dimensions.
The following tests were run on a computer cluster of the University of Cologne. This high
performance computing cluster has 36 nodes. Each node is equipped with two Intel Xeon CPU
E5-2690 v2 CPUs3 with 10 cores each and 128 GB of RAM. The cluster operates on the Debian
GNU/Linux 10 distribution and jobs are scheduled with Oracle Grid Engine. All the experiments
were run in parallel, using one core per process.

2https://www.boost.org/doc/libs/1_66_0/libs/python/doc/html/index.html
3https://ark.intel.com/content/www/us/en/ark/products/75279/intel-xeon-processor-e5-2690-v2-25m

-cache-3-00-ghz.html
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(a) Segmented Image

Grey Matter White Matter Cerebrospinal Fluid Other/Tumour

(b) T1W (c) T2W (d) T1CE (e) FLAIR (f) all

Figure 3.1: [Best viewed in color] Segmentation and k-means1d clustering with k = 4 for Patient
5 (BraTS 13).

(a) Segmented Image
Grey Matter White Matter Cerebrospinal Fluid

(b) T1W (c) T2W (d) T1CE (e) FLAIR (f) all

Figure 3.2: [Best viewed in color] Segmentation and k-means1d clustering with k = 3 for Patient
5 (BraTS 13).

3.3 k-means Comparison

In this section, we compare the clusterings obtained with k = 3 and k = 4 for the k-means1d
algorithm, and then assess the performance of three different k-means algorithms.
In the comparison between three and four clusters we also run one additional clustering method:
all. It is a four-dimensional clustering on a matrix built by combining all four sequences. As can
be seen in Figure 3.1, it is difficult for the clustering algorithms to detect the Other/Tumour class
correctly. By comparison, in Figure 3.2 the results look more similar to the segmentation image.
The sequences that are partially able to detect the Other/Tumour class are T1 Contrast Enhanced
and T2 FLAIR. So, our motivation for the all approach is that it might be able to detect the
Other/Tumour class because it takes into account both T1 Contrast Enhanced and T2 FLAIR.
However, it is not particularly successful, especially in the case with three clusters. Thus, we will
not show this clustering method for the following evaluations.
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Figure 3.3: [Best viewed in color] Comparison between three clusters and four clusters for the
clustering method k-means1d using Rand index (RI), adjusted Rand index (ARI), accuracy (ACC),
combinatorial precision and recall (CombPrec, CombRec), micro/macro/weighted precision and
recall (Micro/Macro/WeiPrec, Micro/Macro/WeiRec), adjusted mutual information score (AMI)
and Fowlkes-Mallows index (FM). The values are grouped by sequence and represent the average
of the scores of the four segmented patients. For all measures a higher value indicates a better
score.

In Figure 3.3 we present the full evaluation metrics obtained with four clusters and three clusters.
In T1 Weighted and T1 Contrast Enhanced most measures improve when switching from four to
three clusters. In T2 Weighted and T2 FLAIR we have similar scores, but T2 Weighted has the
majority of the scores being better for three clusters, while T2 FLAIR has the opposite. The
behavior of all is similar to the one of T2 FLAIR and Figure 3.1f is a better representation of
the manual segmentation, even though it does not detect the Other/Tumour class. In general
precision and recall always have very close values, except for all. In this case the combinatorial
recall is very high, which is due to the fact that most of the pixels are assigned to the red class
(see Figure 3.2f), creating many false positives for this class but a low number of assignments for
the other classes, which makes the overall number of false negatives small. The values for the
adjusted measures (Rand score, mutual information) are always quite low, but not for the case of
T1 Contrast Enhanced.
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3. Clustering Evaluation

(a) Segmented Image (b) k-means1d (c) k-means++ (d) k-means Positional
Grey Matter White Matter Cerebrospinal Fluid

Figure 3.4: [Best viewed in color] Segmentation and different k-means clusterings for T1 Weighted
of Patient 5 (BraTS 13).

To validate our choice of choosing k-means1d as standard method for our hierarchical k-means
clusterings (used in Leveled k-means, Nesting and Leveled Nesting) we present a time and effec-
tiveness comparison with respect to the k-means1d algorithm, the k-means++ algorithm run in
one dimension and the k-means++ algorithm run in four dimensions. In the latter each point
has as first coordinate the color (the only variable considered in the previous clusterings), and as
second, third and fourth positions in the three-dimensional grid of the image. We call this last
method k-means Positional. Whenever we compute the squared Euclidean distance between two
points during the algorithm, each squared distance is weighted: the squared distance of the color
has a weight of 0.85, while the square distances of the indices positions have a weight of 0.05 each.
We tested this method with different weights and the result is that the smaller the weights are,
the better. However, even with very small weights, this method is hardly better than the other
k-means method, as shown in Figure 3.4 and Figure 3.5.
The performance of k-means1d and k-means++ is very similar, but the average running time per
sequence of k-means1d (≈ 1.55 seconds) is three times the running time of k-means++ (≈ 0.44
seconds). The running time for k-means Positional is almost four times (≈ 1.7 seconds) the running
time of k-means++. Furthermore, it can produce clusterings that, for the most part, are too related
to the spatial position of the pixels, independently of how small the weights are. In Figure 3.4d,
only the blue cluster was correctly identified by k-means Positional (but also by k-means1d and k-
means++). The other clusters are strongly misshaped in the k-means Positional clustering, clearly
showing that considering the spatial coordinates negatively influences the results.
In Figure 3.5 we can see that the effectiveness of all methods for T1 Weighted and T2 Weighted
is comparable, with slightly better values for k-means1d and k-means++. These two methods
are clearly the best in T1 Contrast Enhanced. In more detail, k-means1d has better scores for
T1 Weighted and T2 Weighted, while k-means++ has better scores for T1 Contrast Enhanced.
However, the positional clustering performs better than the other two methods in the case of T2
FLAIR. Since we do not use T2 FLAIR in MRI mapping and we mostly focus on T1 Weighted and
T2 Weighted, we choose k-means1d to be the algorithm used for Leveled k-means, Nesting and
Leveled Nesting. Despite its slower running time, we believe that k-means1d is the better choice
over k-means++, since it always produces an optimal k-means clustering. Additionally, due to
the dynamic programming nature of the algorithm, whenever we compute a clustering for some
value of k, it is possible to retrieve the clustering for all values k′ ≤ k. This is an advantage when
running Nesting or Leveled Nesting.
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Figure 3.5: [Best viewed in color] Comparison between k-means1d, k-means++ and k-means Positional using Rand index (RI), adjusted Rand index (ARI), accu-
racy (ACC), combinatorial precision and recall (CombPrec, CombRec), micro/macro/weighted precision and recall (Micro/Macro/WeiPrec, Micro/Macro/WeiRec),
adjusted mutual information score (AMI) and Fowlkes-Mallows index (FM). The values are grouped by sequence and represent the average of the scores of the
four segmented patients. For all measures a higher value indicates a better score.
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3. Clustering Evaluation

3.4 Agglomerative Comparison

In this section, we compare the linkage functions provided by the fastcluster package. Although
we believe that Ward should be our linkage of choice, we conduct an empirical evaluation on all the
offered linkages. Due to the size of our data, for single, centroid, median and Ward we use the
more memory-efficient stored data input approach implemented by fastcluster. Additionally, in
our use case this implementation is also around four times faster than the stored matrix approach.
Since fastcluster requires that the metric for centroid, median and Ward is the Euclidean distance,
we use the same metric for all the other methods to have a better comparison. It is very tedious
to run the non-memory efficient metrics on the full brain, and thus we conduct this evaluation
only on one slice of the brain (middle slice in transverse visualization) instead of running it for
the entire volume. For this evaluation we leave out the combinatorial, micro and macro version of
precision and recall to make the results in Figure 3.7 more readable. For completeness, we discuss
the omitted results in Section A.2, where we also show some comparison pictures for the different
linkages. In T1 Weighted and T1 Contrast Enhanced Ward performs best in most cases. In T2
Weighted and T2 FLAIR most linkages perform similarly. The linkage single does not perform
well and its adjusted Rand index is in many cases close to zero. As usual, T1 Contrast Enhanced
has the best scores, and the best is many times obtained by Ward.

3.5 Comparison of k-means1d, Nesting, Agglomerative

Finally, we discuss the performance of the best k-means method (k-means1d), together with Nest-
ing (with k-means1d) and the best agglomerative linkage (Ward). In Figure 3.8 we present the
results for these three clustering methods. We also add a complete per patient evaluation for this
comparison in Section A.3. In T1 Weighted, Nesting obtains the best score in most measures
while k-means1d and Agglomerative are better for T2 Weighted. As we have previously seen, T1
Contrast Enhanced produces the highest scores, and all clustering methods perform well, even
though k-means1d and Nesting are better. T2 FLAIR presents similar scores to T2 Weighted, and
all clustering methods have very similar scores. In Figure 3.6 we show a comparison of the three
clustering methods on T1 Weighted. All methods are able to correctly identify the blue clusters.
The green cluster created by Agglomerative is too big, while Nesting produces the most realistic
segmentation.

(a) Segmented Image (b) k-means1d (c) Nesting (d) Agglomerative
Grey Matter White Matter Cerebrospinal Fluid

Figure 3.6: [Best viewed in color] Segmentation and k-means1d, Nesting and Agglomerative
(Ward) clusterings for T1 Weighted of Patient 5 (BraTS 13).

To conclude, we achieve better results with the T1 sequences than with the T2s, which is expected
because the segmentations are mostly done on the T1 images. For all sequences except T1 Contrast
Enhanced we generally observe low adjusted Rand scores and adjusted mutual scores. However,
these scores seem to be generally low for our use case. For our given data set, we cannot pinpoint a
single clustering method and number of clusters that fits best for all patients, but from the average
we can say that the methods based on k-means1d work better.
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Figure 3.7: [Best viewed in color] Comparison between different hierarchical clustering linkages using Rand index (RI), adjusted Rand index (ARI), accuracy
(ACC), weighted precision and recall (WeiPrec, WeiRec), adjusted mutual information score (AMI) and Fowlkes-Mallows index (FM). The values are grouped by
sequence and represent the average of the scores of the four segmented patients. For all measures a higher value indicates a better score.
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Figure 3.8: [Best viewed in color] Comparison between k-means1d, Nesting and Agglomerative (Ward) using Rand index (RI), adjusted Rand index (ARI), accuracy
(ACC), combinatorial precision and recall (CombPrec, CombRec), micro/macro/weighted precision and recall (Micro/Macro/WeiPrec, Micro/Macro/WeiRec),
adjusted mutual information score (AMI) and Fowlkes-Mallows index (FM). The values are grouped by sequence and represent the average of the scores of the
four segmented patients. For all measures a higher value indicates a better score.
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MRI-to-MRI Translation: BrainClustering 4

In this chapter, we present our solution for MRI-to-MRI translation, called BrainClustering. In-
tuitively the MRI translation problem appears to be solvable with learning. Moreover, because of
the amount of data provided by BraTS, there is the possibility of training. However, our solution
does not create a model in the usual sense of the term, but it creates tables that can be queried.
In Chapter 1 we described a general color mapping between the different sequences (T1 Weighted,
T2 Weighted, T2 FLAIR) with a table, which we present again in Figure 4.1. Even though the
table is missing the Grey Matter class, it is easy to see that the mappings described in the table
apply to the images in Figure 4.2. However, it is much harder to distinguish the White Matter
in T2 FLAIR. Thus, since there is a visible translation between T1 Weighted and T2 Weighted,
we mostly focus on mapping these two images. Furthermore, in practice it oftentimes occurs that
only T1 Weighted, T1 Contrast Enhanced and T2 FLAIR are produced, while T2 Weighted is the
missing image. Therefore, we focus on reproducing T2 Weighted from T1 Weighted.

(a) Segmented Image (b) T1 Weighted (c) T2 Weighted (d) T2 FLAIR

Grey Matter White Matter Cerebrospinal Fluid Other/Tumour

Figure 4.1: [Best viewed in color] Segmented image and MRI scans for T1 Weighted, T2 Weighted
and T2 FLAIR of patient 5 (BraTS 13).

Tissue T1 Weighted T2 Weighted T2 FLAIR
White Matter Bright Dark Dark

Cerebrospinal Fluid Black White Black
Inflammation Dark Bright Bright

Figure 4.2: Color mapping of T1 Weighted, T2 Weighted and T2 FLAIR with respect to different
tissues1.

1Source: https://case.edu/med/neurology/NR/MRI%20Basics.htm.
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4. MRI-to-MRI Translation: BrainClustering

(a) Average of ten images (b) Average of 50 images (c) Average of 100 images (d) Average of 300 images

Figure 4.3: Average of T2 Weighted with different amounts of images.

(a) T1 Weighted (b) T2 Weighted (c) Complementary of
T1 Weighted

Figure 4.4: T1 Weighted, T2 Weighted and complementary T2 Weighted created by comple-
menting T1 Weighted for patient 0 (BraTS 19).

4.1 Simple Approaches

Before moving to our main approach we present two simple approaches that we considered in the
early stages of our research.

General Image Approximation. Our very first approach involves the generalization of the
T2 Weighted images by taking the average of the points of different T2 Weighted images for each
pixel. This gives us an approximation of the images, which is blurry and imprecise, but still has
structure, as shown in Figure 4.3. However, since this approach cannot be queried for a specific
image and cannot reproduce the tumor information, we did not investigate it in more detail.

Complementary. T1 Weighted and T2 Weighted appear to be complementary of each other.
Thus, given a T1 Weighted with points pT1, we compute the complementary T2 Weighted with
points pT2:

pT2 = min(T1) + max(T1)− pT1.

Figure 4.4 shows an example of the possible results. This approach produces images with poor
coloring, but with a sharp and well-defined structure. The color of the Cerebrospinal Fluid area is
bright enough, but the rest of the image is too light. We evaluate the performance of this method
together with the other more complicated approaches in Chapter 6.
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4.2. BrainClustering Learning

Full Color Spectrum
Color T1 Color T2

0.1 0.60
0.2 0.50
0.3 0.42
0.4 0.40
0.5 0.38
0.6 0.30

Meaningful Subset
Color T1 Color T2

0.1 0.60
— —
0.3 0.45
— —
— —
0.6 0.30

(a) Toy example of the ideal function fi (left) and the function
gi (right).

f̃i(0.2) =
gi(0.1) · (0.3− 0.2) + gi(0.3) · (0.2− 0.1)

0.3− 0.1
= 0.525

f̃i(0.3) = gi(0.3) = 0.45

f̃i(0.5) =
gi(0.3) · (0.6− 0.5) + gi(0.6) · (0.5− 0.3)

0.6− 0.3
= 0.35

(b) Computed values for the example above.

Figure 4.5: Example of the ideal mapping fi and the partial mapping gi and computed values
according to the newly defined f̃i according to Equation 4.1.

4.2 BrainClustering Learning

In this section, we explain our motivation and give an overview of our learning process. Assuming
that we can find a function that expresses the relationship between T1 Weighted and T2 Weighted,
then we can produce T2 Weighted from T1 Weighted. The most basic idea is to create a function
f(x, y, z, c1) = c2 that, given the position x, y, z of the pixel and its color c1 in T1 Weighted,
outputs the corresponding color c2 in T2 Weighted. This is clearly not feasible; the quantity of the
pixels would be hardly manageable, and it would lead to overfitting. A simple, but more general
idea is to create a function f that, for any color c1 of T1 Weighted, outputs the color c2 of T2
Weighted, i.e., f(c1) = c2. However, as can be seen in Figure 4.2 and Figure 4.1, the color c2 may
assume different values according to the tissue it belongs to. Since there are differences in color
changes with respect to the m tissues, we should create m functions f1, . . . , fm. Each function is
then used to predict the T2 Weighted colors of one tissue type, i.e., fi(c1) = c2 means that a pixel
of color c1 in T1 Weighted that belongs to tissue type i has color c2 in T2 Weighted. In practice,
we may choose to store such functions as ordered tables or maps (e.g., search trees) that contain
the (c1, c2) color pairs. However, there can be arbitrarily many values of c1, such that it is not
feasible to actually store the mapping of the entire color spectrum. Instead, we only consider a
small but meaningful subset of the possible values of c1. Let us consider an auxiliary function gi
which represents an approximation of the mapping between T1 Weighted and T2 Weighted for
tissue i. This function is not defined on the full color spectrum C, but only on a smaller portion,
for which it can output approximated values. In Figure 4.5a we present an example of an ideal
function fi and of a corresponding gi function. This function is missing some values, which may
be present in the T1 Weighted sequence that we are currently using as input. To obviate this
problem we can design f̃i such that it returns the values of gi whenever they exist, or computes
an interpolation of the existing values otherwise. Thus, f̃i can be formally defined as:

gi(c), if c ∈ C cmax = max{e | e ∈ C}
gi(cmin), if c < cmin cmin = min{e | e ∈ C}

f̃i(c) =


(4.1)gi(cmax), if c > cmax l = max{e | e ∈ C ∧ e < c}

gi(l) · (u− c) + gi(u) · (c− l)

u− l
. otherwise

u = min{e | e ∈ C ∧ e > c}

For clearer understanding, we compute the values of f̃i for the given example in Figure 4.5b.
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4. MRI-to-MRI Translation: BrainClustering

(a) Patient 5 (b) Patient TCIA01 150 (c) Patient 15 (d) Patient 19

Figure 4.6: [Best viewed in color] Leveled k-means clustering with k = 5 for T1 Weighted of four
patients (BraTS 19). In (a) and (b) the lightest cluster (light blue) is very small. This is due to
the fact that these images have very intense signals in these areas, which then form one cluster.
The central yellow area of (a) and (b) corresponds to the light blue area of (c) and (d), and the
blue area of (a) and (b) corresponds to the yellow area of (c) and (d).

We now are left with two problems: First, we need a method to identify the tissue types in each
scan. Second, for each tissue we need to select a small but meaningful subset of colors to be stored.
As discussed in Chapter 3, clustering can identify the main tissues of the brain, but can also be
used to solve our second problem by creating hierarchical structures. For each main tissue, we
also create a sub clustering of a certain size such that we can create smaller patches. Then, we
compute the average of a patch in T1 Weighted and the average of the corresponding patch in T2
Weighted, and add only these values to the table, such that we obtain a generalization.

As in many other learning procedures, we divide the data set into training and testing. Each
patient entry of the training data set is composed of two images, the input (T1 Weighted) and the
real output image (T2 Weighted). During our process we iterate through the patients, compute
the clusterings for both input and real output, and save the results into tables. After the training
is completed, we retrieve the tables and compute a new image.

Below we summarize the parameters needed for our learning process:
• Clustering algorithm: Leveled k-means, Leveled Nesting or Agglomerative. However, this

method has been implemented independently of the dimensionality and the specifications of
the single clustering algorithms. Thus, it could be used with any clustering algorithm that
produces a leveled structure.

• Number of main clusters: This number should represent the number of tissues of the
image, i.e., the main color areas. Even if our segmented images have been divided into four
colors, we allow any number because they might be able to classify the brain into color classes
more appropriately.

• Number of sub clusters: After dividing the brain into some number of main clusters, we
also want to divide each cluster into smaller clusters such that we can collect different color
patches.

• Reference image: We ensure that the produced clusters are compatible between patients
by performing a cluster label matching (see Section 2.7) with respect to the same reference
image for the training and testing phase.
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4.3. Training

(a) Segmented Image (b) T1 Weighted Clustering (c) T2 Weighted Clustering

Figure 4.7: [Best viewed in color] Union of pixel between segmented image and the current
training patient’s T1 Weighted and T2 Weighted. In black the pixels that were added by computing
the union.

The reference image is used for the following reason: What if, when computing the clustering on
one patient the White Matter is yellow, and on another patient it is light blue (as in Figure 4.6)?
The values produced by these clusterings should theoretically be mapped by the same function, but
are not. However, with a reference image, we can perform label matching and find the standardized
label a cluster should obtain. There are two problems with this approach:

1. The matching is not ensured to be correct. Even though the Hungarian algorithm does
obtain the optimal result, the matching is based on the contingency matrix counts, which
may not accurately represent the different structures of the brains.

2. It is necessary that the labels represent the same pixels. This means that if a point is part of
the background in T1 Weighted but a tissue point in T2 Weighted, we should either consider
it in both images or in none. Label matching requires that the same pixels are taken from the
images being investigated. Since our MRI scans have been registered to the same template,
it is reasonable to assume that similar tissues will occur at similar pixel positions.

Theoretically, the reference image should represent a standardized image. Thus, we choose a
manually segmented MRI scan from a doctor. As discussed in Chapter 3, these images are only
segmented into four tissues, but we allow any number of main clusters. Additionally, as explained
in the same chapter, the tissue Other/Tumour is not really a color class and is very hard to capture
with a clustering algorithm. Thus, whenever the number of clusters is three, we use a segmented
image as reference. Otherwise, we run k-means1d on the first training image and use this clustering
as reference image for all others.

4.3 Training

In this section, we discuss the BrainClustering training process in more detail. First, we initialize
empty maps g1, . . . , gm, and then start the actual learning by considering the first patient. We
compute a hierarchical clustering for both images T1 Weighted and T2 Weighted according to the
number of main clusters and sub clusters that we have chosen. However, the clusterings should
be computed on the union of the non-background points of T1 Weighted, T2 Weighted and the
reference image because of Problem 2 of label matching. Figure 4.7 shows a representation of the
added pixels for each image. Even though these pixels are used to compute the clustering, they are
not considered when building the contingency matrix. Another approach would be to consider the
intersection of the points from these images, but that might prevent some smaller clusters from
being created. One more solution, however more cumbersome, would be to keep track of all the
pixels that are in the intersection between T1 Weighted and T2 Weighted, and T1 Weighted and
the reference image, and skip them when computing the contingency matrix.

Afterwards, we match the labels between T1 Weighted and the reference image, and between T1
Weighted and T2 Weighted. Let i be the label of one of the main clusters in the reference image
and let T1i and T2i be respectively the corresponding clusters in T1 Weighted and T2 Weighted.
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4. MRI-to-MRI Translation: BrainClustering

The next step is to compute the correspondence between the smaller patches of T1 Weighted and
T2 Weighted. For each main cluster i, we compute the intersection of pixels positions of cluster T1i
and T2i (due to Problem 2). Next, we compute the label matching between the smaller patches
of T1 Weighted and T2 Weighted inside cluster i. Once we obtain this second match, we compute
the average of the points in each sub cluster of T1 Weighted, which we call a1. Then, we compute
the average for each corresponding sub cluster of T2 Weighted, which we call a2. Finally, we add
a new entry (a1, a2) to gi, which is the map corresponding to the current main cluster. It may
happen that there already is an entry with key a1 stored in the map. In this case, we compute the
average with the moving average formula:

gi(a1)← gi(a1) +
a2 − gi(a1)

#i(a1)
, (4.2)

where #i(a1) is the number of times we tried to add an entry with key a1 to the map gi. Note
that consequently we have to keep track of #i(a1), i.e., we have to annotate each entry of the map
with the corresponding cardinality. The entire process for one patient is outlined in Algorithm 8
and visualized in Figure 4.8.

Algorithm 8 Training Procedure for One Patient
Input: The patient’s T1 Weighted and T2 Weighted, a clustering algorithm, a number of main
clusters m and sub clusters s, a reference image.
Output: The tables g1, . . . , gm containing a color mapping between T1 Weighted and T2
Weighted.

1. If the tables have not been initialized, create m tables g1, . . . , gm.

2. Compute the union of the non-background points of the reference image, T1 Weighted and
T2 Weighted.

3. Compute a hierarchical clustering with m main clusters and s sub clusters on both T1
Weighted and T2 Weighted.

4. Match the labels of the main clusters in T1 Weighted to the reference image labels.

5. Match the labels of the main clusters in T2 Weighted to the main clusters in T1 Weighted.

6. For each main cluster i ∈ {1, . . . ,m} of the reference image:

a) Let T1i be the corresponding cluster in T1 Weighted.
b) Let T2i be the corresponding cluster in T2 Weighted.
c) Compute the intersection of the points in cluster T1i and cluster T2i.
d) Considering only the intersection, match the labels of the sub clusters of T1i to the labels

of the sub clusters of T2i.
e) Let s1 and s2 be the respective numbers of sub clusters in T1i and T2i.
f) For each sub cluster j ∈ {1, . . . ,min(s1, s2)}:

i. Let T1j and T2j be the corresponding sub clusters in T1i and T2i.
ii. Let a1 be the average color of the points in T1j .
iii. Let a2 be the average color of the points in T2j .
iv. Add (a1, a2) to gi. If the point already exists, compute the average (see Equation 4.2).

The most time-consuming part of this process is the clustering. The label matching is done on
small matrices (first on the main clusters, then on the sub clusters) and the loops to fill the tables
just iterate over all points to compute the averages.

The process is repeated for all patients. Each time a patient has been processed, the tables are
saved, such that, if desired, one could consider using the tables generated by any stage of the
training process, or continue the training with new images. The table file, or model, is named
after a combination of the clustering algorithm and the number of main and sub clusters, such
that it is possible to choose which model to use.

38



4.3. Training

T1 WeightedReference Image T2 Weighted

T1i = blue T2i = greeni = green

T1j = dark red T2j = light blue

a1 = 0.899 a2 = 0.293

gi = ggreen

Color T1 → Color T2
… …

0.899 → 0.293
… …

Figure 4.8: [Best viewed in color] Training procedure for patient 2 (BraTS 19) with Leveled k-
means, three main clusters and 18 sub clusters. First, we select one main cluster i in the reference
image. For example, let i be green. Then, we find the matching label for T1 Weighted (blue)
and for T2 Weighted (green). We now focus only on this cluster and check the sub clusters (six
per main cluster, a total of 18). We compute label matching again and choose one cluster, dark
red in T1 Weighted, which corresponds to light blue in T2 Weighted. We now consider only the
respective points in T1 Weighted and T2 Weighted and compute the average, which is then added
to the mapping table of green, because green is the color of this main cluster in the reference image.
The process is repeated for all sub clusters and main clusters. In this case the points are presented
with a different coloring from the standard black and white images for a clearer distinction on the
white background.
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4.4 Testing

In this section, we describe the querying process of BrainClustering. First, we retrieve the ordered
tables, the reference image, the clustering algorithm and the numbers of clusters. For simplicity,
the reference image, the clustering algorithm and the cluster amounts are saved with the model.
The model is loaded and the ordered tables are given as input to the testing process for each queried
patient. We cluster the T1 Weighted of the patient according to the clustering algorithm (with
k-means1d if the algorithm is Leveled k-means or Leveled Nesting, with Agglomerative otherwise)
with a plain color clustering of m clusters. Then, we compute a label matching between the
retrieved reference image and the new clustered T1 Weighted. Let i be one of the main clusters in
the reference image and let T1i be respectively the corresponding cluster in T1 Weighted. Finally,
we consider each point p of T1i and query the respective function f̃i(p) using the mapping gi(p)
as described in Equation 4.1 (i.e., if gi(p) exists then f̃i(p) = gi(p), or otherwise f̃i(p) is computed
by interpolating between the two closest values in gi).
Once all the points have been computed, the images are postprocessed as described in the next
paragraph. In Algorithm 9 we outline the full querying process. We also provide a simple example
in Figure 4.9.

Algorithm 9 Testing Procedure for One Patient
Input: The patient’s T1 Weighted, the color maps g1, . . . , gm.
Output: The approximated T2 Weighted image for the given patient.

1. Let m be the number of main clusters for which the model was trained.

2. Compute a simple clustering of m clusters on T1 Weighted. The clustering algorithm depends
on the one used during training.

3. Match the clusters of T1 Weighted to the reference image.

4. For each main cluster i ∈ {1, . . . ,m} of the reference image:

a) Let T1i be the corresponding cluster in T1 Weighted.
b) For each point p in T1i, compute the color of p in T2 Weighted with f̃i(p) as defined in

Equation 4.1.

5. Remove noise from the image by applying a filter of choice.

Filters and Smoothing. Filtering is a common process in image and signal processing, and it
is used to eliminate some particular feature of an image. A very important concept in this field
is the mathematical operation of convolution, which is used to combine two functions. In image
processing the two functions are an image, where each pixel represents a value, and a convolution
kernel, which depends on the type of filtering that will be applied. A common filter is the average
filter, which has the following kernel structure:

K =
1

9

1 1 1
1 1 1
1 1 1

 ,

but the size of the kernel can be chosen freely, with the condition of changing the averaging value
to the number of values in the matrix. This kernel is overlapped with each 3× 3 submatrix of the
image to process, and each image pixel is multiplied with the respective kernel pixel. Then, the
sum of the modified pixels is computed. Finally, the image pixel corresponding to the middle of
the matrix is replaced with the newly computed value. Note that to compute the pixels on the
border some image padding is necessary, for example padding with a constant value.

In our case, the images have a type of noise called salt and pepper noise, which is manifested by
few pixels with a very different color with respect to the surrounding ones (see e.g., Figure 4.10b).
The most effective smoothing method for this problem is the median filter, which takes the median
of the pixels under the kernel area and substitutes the central pixel with the selected value. In
this case, the pixel used for substitution is already present in the image. The result of the filtering
process can be seen in Figure 4.10c.
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T1 WeightedReference Image

T1i = redi = blue

0.123
gi = gblue

Color T1 → Color T2
… …

0.114 → 0.787
0.133 → 0.737

… …

0.7640.123

Postprocessing

≈ T2 Weighted ≈ T2 Weighted (smoothed)

Median Filter

Figure 4.9: [Best viewed in color] Testing procedure for patient 0 (BraTS 19). The functions for
this model are built with Leveled k-means, three main clusters and 18 sub clusters. First we retrieve
the same reference image used for training. Then we compute a plain-color clustering, and choose
a main cluster, for example red, and compute the label matching of red in the reference image,
which is blue. We iterate through the points belonging to red, and for each of them we retrieve the
color in the T1 Weighted image. We look for this color in the blue table, and interpolate if it does
not exist. We repeat the same procedure for all points in each main cluster. Finally, we can see
one resulting image and the smoothed image with the median filter. In this case the images are
presented with a different coloring from the standard black-white for a clearer distinction on the
white background. Since the number of sub clusters is very low, there is not much color variety
in the image. In Figure 4.10 we provide the same image with three main clusters and 102 sub
clusters for a better comparison.
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(a) Real T2 Weighted (b) BrainClustering (c) BrainClustering:
Median Filter

Figure 4.10: Real T2 Weighted and T2 Weighted created with BrainClustering with three main
clusters and 102 sub clusters (patient 0 from BraTS 19).

(a) Real T2 Weighted (b) T2 Weighted with
Train&Test

(c) T2 Weighted with Search

Figure 4.11: Real T2 Weighted and T2 Weighted created with BrainClustering with Leveled
k-means, five main clusters and 200 sub clusters with training and testing and with search (patient
0 from BraTS 19).

For our purposes we use the efficient implementation of OpenCV2 for the 3× 3 median filter, but
any arbitrary filter could be chosen instead. The border padding used for the median filter is
implemented by padding with the closest value to the border.

4.5 Search Mode

In this section, we present an additional functionality of BrainClustering, a fusion of training and
testing that produces more targeted results. According to our tests, having large tables produced
by training on many images produces noise in the results. Thus, we propose an additional method
where we do not precompute a large model before querying, but instead compute a small model
every time we want to answer a query. Given a T1 Weighted query image, we first search in the
training data set for the w patients whose T1 Weighted has the smallest MSE to the query image
(where w is a small constant, e.g., w = 5). Then, we create a small model by performing the
training process only on these w patients. Afterwards, we run the testing on the created model.
This approach has the downside that we have to create a new model for every single query, thus
significantly increasing the query time. However, as can be seen in Figure 4.11, we obtain a less
noisy output.

2https://docs.opencv.org/3.4/d4/d86/group__imgproc__filter.html
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Generalized Image-to-Image Translation: Pix2Pix 5

In this chapter, we discuss the Pix2Pix [20] framework and in Section 6.2.3 we describe the more
technical details of our three-dimensional adaptation. Pix2Pix aims at solving the two-dimensional
image translation problem using cGANs (Conditional Generative Adversarial Networks), which are
able to learn the mapping between a set of input and output images. Some common use cases
(and our objective) can be observed in Figure 5.1.

Input Output

Aerial to Map

Input Output

Labels to Facades

Input Output

Day to Night

Input Output

MRI: T1 to T2

Figure 5.1: [Best viewed in color] Some default Pix2Pix examples (aerial shot to maps1, labels
to building facades [40], day to night panorama [25]) and our use case.

5.1 Generative Adversarial Nets

In recent years, CNNs (Convolutional Neural Networks) have popularly been used for solving
image-related tasks. However, they require the specification of a loss function that the network
should train on. GANs are a solution to this problem. In fact, they do not need a specific loss
function, but are trained to create results that are indistinguishable from reality, and they can
implicitly specify a loss function with this purpose.

1Scraped from https://www.google.com/maps.
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Random Input

generator

Fake Image

Real Image

dataset

discriminator ✓ or

discriminator
loss

generator
lossin out

in

in

out

discriminator
backpropagation

generator
backpropagation

generator
backpropagation

Figure 5.2: [Best viewed in color] Example of GAN network with images from MNIST2, a data
set of handwritten digits. The generated image is taken from Towards Data Science3.

A GAN [14] is a neural network framework that simultaneously trains two models, a generator G
and a discriminator D, which work with each other in an adversarial process. In fact, G tries to
capture the data distribution and reproduce the images given in the training, while D estimates
whether the input it receives was given by the training data or by the generator. In other words, the
objective of the generator is to trick the discriminator, while the discriminator wishes to output a
correct guess. The process has the aim of generalizing the input data and generating a new output,
which is believably similar to the training set.

Since we want to create a completely new output, the generator’s input is random noise. The
mapping from random noise to desired output is improved with backpropagation, which is the
most common method for gradient descent on neural networks. In more detail, the generator
creates a sample, which is then passed to the generator, to finally output a loss. These values are
backpropagated through the discriminator and the generator to obtain gradients, which are used
to change the generator’s weights.
The discriminator also learns by backpropagation. The loss of the discriminator is a penalty for
sample misclassification (fake samples as real, or real samples as fake), and its weights are updated
by backpropagation of the loss on the discriminator network. In Figure 5.2 we present a schematic
view of the GAN learning process.

Let G and D be any non-linear mapping functions. The generator learns the distribution pg of
the data y from noise pz(z) and creates a mapping function G(z), while the discriminator with
mapping D(y) outputs the probability that y comes from the training data. Because of the
relationship between the two networks, the objective function as be described as:

Ey [logD(y)] + Ez [log(1−D(G(z)))] . (5.1)

In fact, we train D to maximize the probability that the real data y is identified as real, while we
train G to maximize the probability that the data generated from noise G(z) is detected as real
by the discriminator. The latter objective corresponds to minimizing 1−D(G(z)). The final form
of Equation 5.1 comes from formalizing these high-level objectives with the log-loss principle of
multi-class classification problems.
However, in practice it is indeed better to train G to maximize logD(G(z)), because early in the
learning the discriminator is easily able to detect the generated samples, which may cause the
GAN to saturate, and maximizing logD(G(z)) prevents this effect.

Conditional GANs. In our use case we do not want to create a generalization, but an output
based on a controlled input. This can be achieved with conditional GANs [32].
cGANs introduce a condition to the objective function in Equation 5.1, which results in asking for
a believable result that represents a mapping from a given input. Thus, we also have an additional
parameter x for our mapping function G, which yields the following objective function:

Ex,y [logD(x,y)] + Ex,z [log(1−D(G(x, z)))] .

3http://yann.lecun.com/exdb/mnist/
3https://towardsdatascience.com/gan-by-example-using-keras-on-tensorflow-backend-1a6d515a60d0
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Figure 5.3: Generator and discriminator representation in Pix2Pix. Image inspiration from
AffineLayer4.

5.2 Pix2Pix

Pix2Pix [20] is presented as a solution to the common pixel-to-pixel translation problem, which
is commonly handled by creating ad hoc software. This framework is based on cGANs, but uses
a slightly different objective function, which according to their experiments improves the quality
of the results. In Figure 5.3 we present a sketch of the behavior of the generator and of the
discriminator in Pix2Pix.
A simple method to perform image translation is to pass a function through a network and compute
the loss as the absolute (L1 loss) or squared (L2 loss) differences. The authors fuse this concept
together with the cGAN loss, which means that the objective of the discriminator is unchanged,
while the generator is asked to trick the discriminator while maintaining a small loss. According
to the authors, the L2 loss produces more blurred images, and thus L1 is chosen instead.
The resulting objective function is:

Ex,y [logD(x,y)] + Ex,z [log(1−D(x, G(x, z)))] + λ · Ex,y,z [∥y −G(x, z)∥1] ,

where λ can be any weight. The authors report that on their experimental setup using the cGAN
alone (λ = 0) produces artifacts in the images, which can be reduced by using λ = 100.

Another difference from the previous two models is that the noise is not used as input anymore,
but rather implemented in the form of dropout in some layers of the generator to prevent a
deterministic output. Dropout is a common strategy to prevent neural networks from overfitting,
and involves dropping a randomly selected set of neurons. However, in this case it is only used to
provide some noise, which nonetheless only yields minor stochasticity to the output.

Next, we discuss in more detail the structure of the generator and of the discriminator for this
particular framework.

5.2.1 Generator: U-Net
The feature detection process in CNNs is implemented by transforming the input into smaller and
smaller interpretations, such that the essential features of the data can be understood. In image
translation problems the desired mapping is between a high resolution input and a high resolution
output, and thus we need a network architecture that is able to capture, with a sequence of
downsampling and upsampling operations, the mapping between the images. Many solutions to
similar problems employ an encoder-decoder network, which compresses the images into smaller
and smaller representations using convolution and then reverses the process and obtains an image
of the original size. In Pix2Pix they use a slightly different network, called U-Net, that additionally

4https://affinelayer.com/pix2pix/.
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Figure 5.4: The structure of the U-Net network used in Pix2Pix.
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has skip connections, which give it the shape of a “U” (Figure 5.4). The skip connections add
concatenations between each dowsampling layer i and each upsampling layer n− i, where n is the
total number of layers.

However, convolution and deconvolution are not the only operations performed in the encoding/de-
coding process. In fact, the convolution result is batch normalized and passed through a non-linear
activation function. Batch norm is the process of normalizing the current batch by subtracting the
mean and dividing by the standard deviation, which improves accuracy and training speed [17].
The activation function of choice is the ReLU (Rectified Linear Unit) (Figure 5.5a) for the upsam-
pling operation and the Leaky ReLU (Figure 5.5b) for the downsampling.

When designing the filters used in the convolution, it is important to know the size of the image.
In fact, they created two types of U-Net (U-Net128 and U-Net256) which work respectively with
images with sizes that are multiples of 128 and 256. However, thanks to data augmentation, any
size can be processed to fulfill either of these requirements. In fact, if an image is too small, it can
be padded, while if it is too big, it can either be scaled or cropped. In the latter case each image is
randomly cropped such that the network always processes a different part of the image, and will
eventually be able to capture the entire structure. Furthermore, the images may also be randomly
flipped, such that the network does not get used to the position of an image and obtains a better
generalization. In Figure 5.5 we present the U-Net128 network structure for a two-dimensional
128× 128 input.

5.2.2 Discriminator: PatchGAN
The L2 and L1 losses can accurately capture low frequencies, but fail to produce sharp images,
which yields blurred results. Thus, it is sufficient to focus the discriminator on high frequencies,
letting the L1 loss handle the low ones. Therefore, the authors of Pix2Pix implement a discrimina-
tor called PatchGAN, that does not compare entire images, but rather smaller patches of a given
size.
The current PatchGAN implementation takes the real input and the unknown output (either the
real output or the output of the discriminator) and classifies each 70 × 70 patch of the unknown
image into real or fake. The two images are concatenated and a binary image is created with a
sequence of convolution operations. The size of the binary image depends on the input size and
each pixel represents the believability of a patch of the unknown image. In Figure 5.6 we show the
PatchGAN network structure for a two-dimensional 128× 128 input.
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Figure 5.5: Generator structure: U-Net128 network for a 128× 128 grayscale input. The U-Net128 network is designed to have seven encoding/decoding steps.
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Mapping Evaluation 6

In this chapter, we evaluate the quality of the produced images. Our evaluation is based on
errors with respect to the real image and on the comparison between the real tumor segmentation
and segmentations that can be achieved with our transformed images. The former is performed
manually by a doctor, while the latter is produced by tumor segmentation software (DeepMedic
and HD-GLIO) with three original MRI scans and one transformed image as input. As discussed
previously, the tumor segmentation software has been trained with the four sequence types (T1
Weighted, T2 Weighted, T1 Contrast Enhanced, T2 FLAIR). We test our transformation functions
by substituting the original T2 Weighted with a T2 Weighted produced with one of the previously
discussed mapping functions (BrainClustering and Pix2Pix). All of our transformations produce
T2 Weighted from T1 Weighted.
Furthermore, we also present a small preliminary evaluation of the results that can be obtained
with DeepMedic for reproducing T1 Contrast Enhanced from T1 Weighted.

6.1 Evaluation Metrics

In this section, we describe the different evaluation metrics that we use: mean squared error (MSE),
sensitivity, specificity, Dice similarity coefficient (DSC) and Hausdorff distance. We use the MSE
to analyze how similar the approximated images are compared to the original ones. In contrast to
that, the other measures are used to compute the quality of the tumor segmentation that can be
achieved with our transformed images.
Additionally to the listed measures, we also compute the accuracy, which has been previously
described in Section 3.1. The accuracy is computed between the ground truth of the segmentation
and a segmentation produced with DeepMedic or HD-GLIO by checking if the labels correspond
pixel-wise. However, this measure is exclusively computed on the area of the tumor to prevent a
too high score given by correctly pinpointing the general position of the tumor. We discard the
other previously used measures because they are not commonly used for this type of evaluation.
Sensitivity, specificity, DSC and Hausdorff distance are computed on binary data created by clas-
sifying the tumor segmentation files into three classes (Section 1.1.1): Whole Tumor, Tumor Core,
Active Tumor. In this interpretation the pixels that have value one correspond to the membership
to the class, and are zero otherwise. Thus, we obtain one score for each of the three classes. We
compute these measures with the plastimatch package1, which is equipped with efficient algorithms
for medical imaging.

Mean Squared Error. Let truth be the real T2 Weighted image and let pred be the predicted
result. The mean squared error measures the estimated difference between the truth and the
prediction:

MSE =
1

n_samples
·

n_samples∑
i=1

(truthi − predi)
2.

1https://plastimatch.org/
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t
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p

Figure 6.1: [Best viewed in color] Example of two possible segmentations in two dimensions,
where T is the real tumor and P is our predicted version. The directed Hausdorff distance d⃗H(T, P )
is indicated by the red line.

Sensitivity, Specificity and Dice Similarity Coefficient or F1 Score. Sensitivity and
specificity are the medical counterpart of precision and recall. In fact, sensitivity corresponds to
recall, while specificity corresponds to the precision with respect to the true negatives:

sensitivity =
TP

TP + FN
, specificity =

TN
TN + FP

.

The measures are traditionally computed on binary data. Since the positive condition of our use
case is the presence of a tumor, it is more relevant to consider how many brain voxels identified as
healthy do not actually have a tumor, then to consider the percentage of selected the brain voxels
that really contain a tumor.
However, we do consider the precision in an additional measure, called Dice Similarity Coefficient
or F1 score, which is the harmonic mean of the precision and recall.

F1 score = 2 · precision · recall
precision + recall

=
2 · TP

2 · TP + FP + FN

All values are bounded in range [0, 1].

Hausdorff Distance. The Hausdorff distance [37] is commonly used in computer vision to detect
the distances between shapes or volumes. Given regions T of the true tumor and P of the predicted
tumor, the directed Hausdorff distance from T and P is the maximum distance of any point in T
to their closest point in P :

d⃗H(T, P ) = max
t∈T

min
p∈P

d(t, p),

where d(t, p) is the Euclidean distance between point t of the true segmentation and p of the
predicted one. An example representation of this distance can be found in Figure 6.1.
The Hausdorff distance can also be undirected, and in such case the maximum of the two possible
directed distances is taken:

dH(T, P ) = dH(P, T ) = max(d⃗H(T, P ), d⃗H(P, T )).

There are many variations to the Hausdorff distance [12]. The one used by the BraTS challenge is
the undirected percent Hausdorff distance. The directed percent Hausdorff distance does not take
the point t with the maximum distance, but instead takes the point whose distance is greater or
equal than 95% of the distances of the other points in T (i.e., it considers the 95th percentile). The
reason behind this is that a single point might by an outlier that has a significantly larger distance
than usual. Let r be any percentage and let Pr be the function returning the r-th percentile of a
multiset, then the directed r% Hausdorff distance is defined as:

d⃗H,r(T, P ) = Pr

[
min
p∈P

d(t, p) | t ∈ T

]
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6.2. Implementation Details and Experimental Setup

The undirected percent Hausdorff distance is computed as the average of the two directed distances:

dH,r(T, P ) = dH,r(P, T ) =
d⃗H,r(T, P ) + d⃗H,r(P, T )

2
.

6.1.1 Ranking
Due to the quantity of evaluation measures, which additionally are computed on different regions,
it is sometimes complex to establish which approach performs best. To obviate this problem, we
apply the same ranking scheme used by BraTS [9], which has been proven successful for other
challenges [28, 42]. The ranking is based on two measures: the Dice score and the undirected
95% Hausdorff distance. The Hausdorff distance is bounded below (zero, the best value) but not
bounded above, and thus it is converted to the bounded range [0, 1] by scaling and inverting the
value to ensure comparability between the metrics.
We first compute the average over the two measures and the three regions for each patient and
approach. Afterwards, we average over the patients to compute the final ranking.

6.2 Implementation Details and Experimental Setup

In this section, we discuss the data sets used for training and testing and we describe the more
technical details of our implementation.

6.2.1 Data Sets
The original BraTS 19 data set is composed of 334 patients with tumor segmentation ground
truth and 125 patients without ground truth. All patients have four MRI scans: T1 Weighted, T2
Weighted, T1 Contrast Enhanced, T2 FLAIR.
We split the BraTS data set with ground truth into 300 training patients and 34 validation patients.
We choose the data set without ground truth to be our test set. All sets contain patients with high
and low grade gliomas. A portion of 14 patients from our test set has been manually segmented
by a doctor at the University Hospital of Cologne, only for patients with high grade gliomas.

To summarize, we have the following data sets:
• train: 300 patients from the BraTS 19 data set, with tumor ground truth from BraTS.
• val: 34 patients from the BraTS 19 data set, with tumor ground truth from BraTS.
• testUK: 14 patients from the BraTS 19 data set, with tumor ground truth from the University

Hospital of Cologne. The segmentation performed by the doctor has been converted to the
BraTS 19 labels.

• testNGT: 111 patients from the BraTS 19 data set without tumor ground truth.

6.2.2 BrainClustering
The BrainClustering transformation functions are written in C++ 17 and ported to python with
Boost.Python2. The main handling of the program, such as data collection, plotting and general
operations are performed in python. However, the main algorithms are implemented in C++ using
the specifications described in Chapter 4.
The color maps are implemented with the std::map data structure, which has logarithmic com-
plexity for insertion and search. They are implemented as red black trees, which are binary search
trees with the additional self-organizing property that their depth is O (log n) at all times. The
maps are saved with Boost.Serialization3, which performs a reversible deconstruction of C++ data
structures.

We use BrainClustering both in Train&Test and in search mode. In Train&Test mode the tables
are built by training on 300 patient images (train). For all approaches we use patient 1 from
BraTS 13 as the reference image whenever we have three main clusters, and we use a clustering of
the first training image for any other number of clusters.

2https://www.boost.org/doc/libs/1_66_0/libs/python/doc/html/index.html
3https://www.boost.org/doc/libs/1_72_0/libs/serialization/doc/index.html
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6.2.3 Pix2Pix
We extend the original Pix2Pix framework4, which is implemented in PyTorch5, a popular machine
learning framework for python. However, there exist implementations using other frameworks,
which produce different results: Tensorflow6,7, Chainer8 and Keras9.
Thanks to the many useful operations already present in PyTorch, it is rather easy to modify the
networks to take three-dimensional instead of two-dimensional inputs. However, we modified the
data augmentation with an additional library, TorchIO [35], which implements useful preprocessing
and data augmentation routines for medical imaging.

The default generator architecture for Pix2Pix is U-Net256. According to our preliminary tests on
a two-dimensional slice of a brain, the results produced lower MSEs with this default architecture
instead of a U-Net128 network. Thus, our first approach was to adopt this same network for
three-dimensional data, which requires an input three-dimensional image with side length that is
a multiple of 256. However, this amount of data could not be processed by our initial GPU setting,
an 8 GB NVIDIA GeForce GTX 1070, because of the large amount of memory needed. Thus,
the chosen architecture for the generator is U-Net128. During the training phase, the images are
preprocessed to have side length 128 by performing random crops, while during the testing phase
they are padded to have side length 256.

The network is trained on 300 training patients (train) and 200 epochs. All other network
parameters are the default ones given by the authors of the paper.

6.2.4 DeepMedic
DeepMedic has been trained on one single GPU with 300 training patients (train) from the BraTS
19 data set, each with six NIfTI files: the four sequences, the true segmentation of the tumor, and
the brain mask, which is a three-dimensional image that marks the brain voxels. Additionally,
DeepMedic also takes as input a set of validation data (val) to further optimize the parameters.
The network has been trained on ground truth coming exclusively from BraTS 19.

6.2.5 HD-GLIO
HD-GLIO has a pretrained model and thus requires the data to have a certain shape and position-
ing: The images have to be skull-stripped, co-registered and oriented to the standard template
images (MNI152). In the BraTS images the first two steps are already performed, but for com-
pleteness we repeated the registration using flirt10. Before the registration, we also reoriented
the images with fslreorient2std11. Since HD-GLIO has not been trained on our data, the tumor
segmentation labels are in a different order and it is necessary to map them to the BraTS ordering
before performing any evaluation.

6.2.6 Experimental Setup
We use a workstation that was kindly provided by the chair of Computational Analytics12 of the
University of Bonn to run the experiments which require a GPU and to compute the evaluation
metrics. The BrainClustering scans are computed on a compute cluster of the University of
Cologne.
The workstation has an AMD Ryzen 3960X 24-core processor13 with 2.2 GHz clock speed and 128
GB of RAM and is equipped with two 11 GB NVIDIA GeForce RTX 2080Ti GPUs14 with CUDA
11. The operating system is Ubuntu 20.04 Desktop.

4https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
5https://pytorch.org/
6https://github.com/affinelayer/pix2pix-tensorflow
7https://github.com/yenchenlin
8https://github.com/pfnet-research
9https://github.com/tdeboissiere/DeepLearningImplementations/tree/master/pix2pix

10https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FLIRT
11https://fsl.fmrib.ox.ac.uk/fsl/
12https://ca.cs.uni-bonn.de/doku.php?id=start
13https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-3960x
14https://www.nvidia.com/de-de/geforce/graphics-cards/rtx-2080-ti/
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6.3. Tumor Segmentation with Original Images

(a) Real Tumor Segmentation (b) Segmentation with DeepMedic (c) Segmentation with HD-GLIO

Necrotic/Non-Enhancing Tumor Edema Contrast Enhanced Tumor

Figure 6.2: [Best viewed in color] Comparison between the real tumor segmentation and the ones
produced by DeepMedic and HD-GLIO for patient CBICA BHN (testUK).

6.3 Tumor Segmentation with Original Images

In this section, we compare the performance of DeepMedic and HD-GLIO. These CNNs are tumor
segmentation tools that, given T1 Weighted, T2 Weighted, T1 Contrast Enhanced and T2 FLAIR
are able to predict the location of the tumor. This comparison is performed on a small set of
patients (14 patients) from the test data set for which we have the ground truth (testUK). For
this evaluation we can neither use the training nor the validation data, since they have been used
to train DeepMedic.
The tumor files of BraTS 19 indicate three different parts of the tumor: Necrotic/Non-Enhancing
Tumor, Edema and Contrast Enhanced Tumor, previously described in Section 6.3, and represented
with an example in Figure 6.2a.
In Figure 6.2 we show an example of a real segmentation compared to the ones produced by
DeepMedic and HD-GLIO. As it is possible to see from this example, HD-GLIO is not able to
detect the Necrotic/Non-Enhancing Tumor class according to our tests.
Additionally, in Figure 6.3 and Figure 6.4 we analyze the performance of DeepMedic and HD-GLIO
with respect to the truth by computing our evaluation measures.
These results are not surprising: Since the training and the testing data set of DeepMedic come
from the same source, they present more similarity and we expect it to have an advantage with
respect to HD-GLIO. Both methods have high specificity on all three regions, which is a minimum
requirement for good tumor segmentation software. However, DeepMedic has higher accuracy and
sensitivity. The Dice score is better for DeepMedic in the Active Tumor and Tumor Core regions,
and both approaches perform well in the Whole Tumor region.
With respect to the Hausdorff distances HD-GLIO has an advantage, but not in the Active Tumor
because HD-GLIO does not detect Necrotic/Non-Enhancing Tumor class, but the entire contrast
enhanced area, which causes its distances to be higher.

6.4 Choice of Main and Sub Clusters

In this section, we empirically choose the number of main clusters and the number of sub clusters
that we use to evaluate BrainClustering. To choose the most fitting values we first have a small
evaluation of the mean squared errors of BrainClustering k-means with different values for our
parameters, and then we choose a number of sub clusters and compare the results obtained with
the segmentations. To avoid training many different models on the full training data, we run the
evaluation in search mode by training on the five images that have the smallest mean squared error
with respect to T1 Weighted (see Section 4.5).
The data set chosen for the first part of this experiment is composed by the patients for which we
have the ground truth, but that have not been used for training. Thus, this evaluation is run on
val and testUK. We present the mean squared errors obtained in both data sets in a single graph.
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Figure 6.3: [Best viewed in color] Comparison between DeepMedic and HD-GLIO with respect
to the true tumor segmentation using accuracy (ACC) for the produced labels and sensitivity,
specificity and Dice score on three different regions (Whole Tumor, Tumor Core, Active Tumor).
The scores represent the distribution of 14 patients from testUK. For all measures a higher value
indicates a better score. The crosses represent the averages, while the thick bars are the medians
and the dots are the outliers.
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Figure 6.4: [Best viewed in color] Comparison between DeepMedic and HD-GLIO with respect
to the true tumor segmentation using undirected Hausdorff distance and undirected 95% percent
Hausdorff distance on three different regions (Whole Tumor, Tumor Core, Active Tumor). The
scores represent the distribution of 14 patients from testUK. For all measures a lower value indicates
a better score. The crosses represent the averages, while the thick bars are the medians and the
dots are the outliers.
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Figure 6.5: [Best viewed in color] Comparison between different numbers of main clusters and
sub clusters for BrainClustering k-means in search mode using mean squared errors in the brain
mask area and in the tumor area. The scores represent the distribution of 48 patients, 14 from
testUK and 34 from val. For all measures a lower value indicates a better score. The crosses
represent the averages, while the thick bars are the medians and the dots are the outliers.

We choose three, four, five and six number of main clusters and 100, 200 and 500 number of sub
clusters. Note that because of the way Leveled k-means is implemented, the number of sub clusters
may vary. Since the number of sub clusters needs to be divisible by the number of main clusters,
for each number of sub clusters we take the next number that is divisible. For example, for three
number of main clusters 100 is not valid, and thus we take 102.

In Figure 6.5 are the results of this experiment. The number of main clusters for which we achieve
the best mean squared error in the brain area (not considering the background) and in the tumor
area (only for the points belonging to the tumor) is four clusters. We expect higher values for any
number of clusters greater than six, and we believe it would not be meaningful to run these tests
with less than three clusters. In all cases, applying the median filter improves the result.

The number of sub clusters does not particularly influence the scores if the number of main clusters
is less than six. However, the number of sub clusters makes a difference in the computation time.
In Table 6.1 we have the average computation time for each pair of main clusters and sub clusters.
Considering the same number of sub clusters, whenever we use a larger number of main clusters,
the computation decreases. This is because Leveled k-means divides the number of sub clusters
over the number of main clusters, so it is indeed faster to compute this kind of clustering with
smaller partitions. In most cases we obtain better results with 500 sub clusters. However, the time
consumption doubles, so we choose 100 sub clusters to be the value used for our next experiments.

To motivate even further our choice for the main clusters, we build one data set for each value
of main clusters composed by the original T1 Weighted, T1 Contrast Enhanced and T2 FLAIR

Table 6.1: Average number of minutes spent running BrainClustering k-means in search mode
(with five images) for different numbers of main and sub clusters.

Main Average Runtime with Average Runtime with Average Runtime with
Clusters 100 Sub Clusters 200 Sub Clusters 500 Sub Clusters

3 10.28 minutes 13.58 minutes 23.32 minutes
4 9.31 minutes 11.74 minutes 18.85 minutes
5 9.01 minutes 10.87 minutes 16.45 minutes
6 8.81 minutes 10.35 minutes 15.09 minutes
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Figure 6.6: [Best viewed in color] Learned T2 Weighted for different numbers of main clusters for
patient TCIA01 401 (val) and with the respective tumor segmentations created with DeepMedic.

and our generated T2 Weighted for that value and use it as input for DeepMedic and HD-GLIO.
Note that, for the same reason as before, we do not use the images from the validation data set,
because otherwise DeepMedic would have an unfair advantage. The number of main clusters that
performs best is then chosen for the final evaluation with BrainClustering k-means, Nesting and
agglomerative.
In Figure 6.6 we show the predicted output for T2 Weighted of patient TCIA01 401 of BraTS 19
for different numbers of clusters. The segmentations produced with our transformed images are
not able to detect the edema class, which is an expected result because this tissue is commonly
segmented from T2 Weighted.
In Figure 6.7 we present the computed ranking for the original segmentation (done with the
original T1 Weighted, T2 Weighted, T1 Contrast Enhanced and T2 FLAIR) and the ones executed
by swapping one image with the one produced with a certain number of clusters. Additional
evaluation metrics are shown in Section B.1. As expected, the segmentation with the original
images ranks first for both DeepMedic and HD-GLIO, but HD-GLIO is more robust to changes,
and the differences between the segmentation produced with the original images and the ones
produced with BrainClustering is smaller. Overall, DeepMedic produces segmentations of higher
quality with the original images, but the segmentations produced with one transformed image yield
similar rankings in DeepMedic and HD-GLIO (except three main clusters for HD-GLIO). Different
numbers of main clusters are better in each method: For DeepMedic, four clusters performs best,
while for HD-GLIO three is the best value. Thus, we will run the next evaluations with four main
clusters for DeepMedic and three main clusters for HD-GLIO.
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Figure 6.7: [Best viewed in color] Comparison of BrainClustering k-means (search) with different
numbers of main clusters with respect to the true tumor segmentation. The used metrics are Dice
score and undirected 95% percent Hausdorff distance on three different regions (Whole Tumor,
Tumor Core, Active Tumor). The scores represent the distribution of 14 patients from testUK.
For all measures a higher value indicates a better rank. The values are computed from Figure B.1
and Figure B.2. The crosses represent the averages, while the thick bars are the medians and the
dots are the outliers.

6.5 Transformed T2 Weighted Evaluation

In this section, we evaluate the quality of the T2 Weighted produced with different approaches.
Our main objective is to investigate whether the transformed images produced by our approaches
are able to achieve effective results in tumor segmentation. To do so, we run the segmentation
software with the original T1 Weighted, T1 Contrast Enhanced, T2 FLAIR, and we substitute the
original T2 Weighted image with a generated image.
In the following, a list of all the methods that are compared in our benchmarks:

• Original: The original T2 Weighted is used.
• Complementary: T2 Weighted is created by complementing T1 Weighted.
• Pix2Pix: T2 Weighted is produced by using the corresponding T1 Weighted as input for

the cGAN.
• BC k-means: BrainClustering is run in Train&Test mode, clustering 300 patients with

Leveled k-means. T2 Weighted is produced by querying the tables with the corresponding
T1 Weighted.

• BC Nesting: BrainClustering is run in Train&Test mode, clustering 300 patients with
Leveled Nesting. T2 Weighted is produced by querying the tables with the corresponding
T1 Weighted.

• BC-S k-means: BrainClustering is run in search mode, clustering the five patients with the
closest MSE with Leveled k-means. T2 Weighted is produced by querying the tables with
the query image.

• BC-S Nesting: BrainClustering is run in search mode, clustering the five patients with the
closest MSE with Leveled Nesting. T2 Weighted is produced by querying the tables with the
query image.
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(a) Real T2 Weighted (b) Pix2Pix T2 Weighted

Figure 6.8: Real T2 Weighted and synthesized T2 Weighted generated by Pix2Pix for patient
CBICA ALT (testUK).

• BC-S Agglomerative: BrainClustering is run in search mode, clustering one patient with
the closest MSE with Agglomerative. T2 Weighted is produced by querying the tables with
the query image.

We do not run Agglomerative in Train&Test mode, but only in search mode because it is compu-
tationally expensive and has a large memory footprint. It takes around seven hours to compute
the agglomerative clustering for one single image, compared to the ten minutes that it takes to
compute the k-means clustering for five images. Nesting is also marginally more computationally
expensive than k-means, and it takes approximately 15 minutes to process five images.
In Table 6.2 we show the training and testing times for BrainClustering and Pix2Pix. The number
of hours spent for training BrainClustering k-means and BrainClustering Nesting are computed as
the average of the time taken to compute the training for three main clusters and for four main
clusters. As expected, the time taken by BrainClustering Nesting is more than twice the time
taken by BrainClustering k-means. BrainClustering k-means is much faster than Pix2Pix, and the
time taken for testing is very similar for all methods.
For all methods we produce both a plain T2 Weighted output and T2 Weighted filtered with the
median filter. Since the median filter often yields a lower MSE, we choose the filtered images for
the MSE computation and as input for the segmentation.

6.5.1 Data with Ground Truth
In this section, we conduct our evaluation on data for which we have the ground truth, which is
formed by the 34 patients from val and 14 patients from testUK. Since we had some discrepancies
on which value of main clusters is better for DeepMedic and HD-GLIO, their input is different.
In Figure 6.9 we present the mean squared errors for the data with ground truth. There are two
values for each BrainClustering entry, because one is used for DeepMedic (four main clusters) and
one HD-GLIO (three main clusters). Pix2Pix obtains the best MSE in the brain voxels, but the
worst one in the tumor voxels. Figure 6.8 shows an example of a result with a good structure,
but a poor coloring for the tumor area (white area in Figure 6.8a). Since the aim of the network
is to produce a generalization, it is not able to capture the structure of the tumor at the current
state of the project. However, it obtains the most realistic results because it aims at minimizing
the absolute error between the input and the output image. Complementary has the worst MSE
because it produces a poor coloring of the image. All the BrainClustering algorithms behave
similarly, except for Agglomerative which has a worse MSE both in the brain and in the tumor
voxels.

Table 6.2: Approximate number of hours spent training and testing our training algorithms.

Pix2Pix BC k-means BC Nesting
Training (300 Patients) 10.05 3.26 10.48
Testing (111 Patients) 0.32 0.29 0.28
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Figure 6.9: [Best viewed in color] Comparison of different approaches using mean squared errors
in the brain mask area and in the tumor area. The scores represent the distribution of 48 patients,
14 from testUK and 34 from val. For all measures a lower value indicates a better score. The
crosses represent the averages, while the thick bars are the medians and the dots are the outliers.

In Figure 6.10 and Figure 6.11 we show the results obtained with the different approaches for
patient CBICA ARR. This patient has an average ranking for DeepMedic (0.69 out of a 0.63
average for all approaches) and a below average ranking for HD-GLIO (0.56 out of a 0.67 average for
all approaches). Once more, the segmentation from HD-GLIO does not detect the Necrotic/Non-
Enhancing Tumor class. In the resulting segmentations DeepMedic is not able to detect the edema,
and in this particular case everything is classified as Contrast Enhanced Tumor. On the other hand
HD-GLIO does find the edema and in some approaches it produces a result that is very similar to
the one with four original images.
Figure 6.12 and Figure 6.13 show the final ranking of the chosen approaches for the two different
data sets. For completeness, we present the detailed results of the individual scores in Section B.2.
DeepMedic should perform better on the validation data set, since its parameters have been op-
timized with it. In the testUK data set the best results are obtained with Complementary for
DeepMedic and with BrainClustering k-means in search mode for HD-GLIO. HD-GLIO is more
robust, and the introduction of a transformed MRI does not decrease the quality significantly. It
performs worst with Pix2Pix and BrainClustering Nesting in search mode. On the other hand,
DeepMedic has a large difference between the segmentation with the original images and the
other approaches. Overall, Agglomerative does not perform well, while the other BrainClustering
approaches are comparable. In the validation data set we also have similar results.

To conclude, k-means is the best strategy of BrainClustering: It is fast, and produces the best
results. However, Complementary produces equally good results, with the additional advantage of
being simple and producing sharp images. Pix2Pix produces very realistic images, which however
are not able to outperform the Complementary approach.
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Figure 6.10: [Best viewed in color] Learned T2 Weighted and respective DeepMedic tumor segmentation of patient CBICA ARR (testUK) for different approaches.
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Figure 6.11: [Best viewed in color] Learned T2 Weighted and respective HD-GLIO tumor segmentation of patient CBICA ARR (testUK) for different approaches.
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Figure 6.12: [Best viewed in color] Comparison of different approaches with respect to the
true tumor segmentation using Dice score and undirected 95% percent Hausdorff distance on three
different regions (Whole Tumor, Tumor Core, Active Tumor). The scores represent the distribution
of 14 patients from testUK. For all measures a higher value indicates a better rank. The values
are computed from Figure B.3 and Figure B.4. The crosses represent the averages, while the thick
bars are the medians and the dots are the outliers.
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Figure 6.13: [Best viewed in color] Comparison of different approaches with respect to the
true tumor segmentation using Dice score and undirected 95% percent Hausdorff distance on three
different regions (Whole Tumor, Tumor Core, Active Tumor). The scores represent the distribution
of 34 patients from val. For all measures a higher value indicates a better rank. The values are
computed from Figure B.5 and Figure B.6. The crosses represent the averages, while the thick
bars are the medians and the dots are the outliers.
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(a) Comparison of different approaches using
mean squared errors in the brain mask area.
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(b) Comparison of different approaches with respect to
the segmentation with four original MRI scans using
Dice score and undirected 95% percent Hausdorff dis-
tance on three different regions (Whole Tumor, Tumor
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Figure 6.14: [Best viewed in color] The scores represent the distribution of 111 patients from
testNGT. For the values of Figure 6.14a a lower value indicates a better score, while it is the
opposite for the rankings in Figure 6.14b. The values of the latter are computed from Figure B.7
and Figure B.8. The crosses represent the averages, while the thick bars are the medians and the
dots are the outliers.

6.5.2 Data without Ground Truth
Additionally, we also have a set of 111 patients for which we have no ground truth. Thus, we
compare the results with respect to the original segmentation instead of comparing to the ground
truth. In this case we only present the evaluation for Complementary, Pix2Pix, BrainClustering
k-means and Nesting. We display the MSE values in Figure 6.14a, the full evaluation metrics in
Section B.2 and the rankings in Figure 6.14b. The resulting MSE values match the performance
of the previous data sets, so Pix2Pix is indeed the best at reproducing the images in terms of
error. In Figure 6.15a and Figure 6.15b we show the result for the example patient CBICA AAM.
This patient has an average ranking for DeepMedic (0.64 out of a 0.65 average for all approaches)
and an above average ranking for HD-GLIO (0.83 out of a 0.69 average for all approaches). In
the DeepMedic segmentation the BrainClustering methods are able to reproduce the segmenta-
tion of the original images better, while in HD-GLIO all methods perform similarly, but with
Complementary being the best performing one. Also, HD-GLIO has higher ranks, meaning that
the approaches with a substituted image have a similar segmentation to the one created with the
original images, which is consistent with the results we obtained in Figure 6.12 and in Figure 6.13.
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Figure 6.15: [Best viewed in color] Learned T2 Weighted and respective DeepMedic (a) and
HD-GLIO (b) tumor segmentation of patient CBICA AAM (testNGT) for different approaches.
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Figure 6.16: [Best viewed in color] Comparison of different approaches using mean squared errors
in the brain mask area. The scores represent the distribution of 48 patients (14 from testUK and
34 from val) and 111 patients (testNGT). A lower value indicates a better score. The crosses
represent the averages, while the thick bars are the medians and the dots are the outliers.

6.6 Additional Mappings: Transformed T1 Contrast Enhanced
Evaluation

In this section, we present a small, preliminary evaluation of the T1 Contrast Enhanced images
that can be created from the T1 Weighted images. In the previous evaluations we obtained the
best results with DeepMedic, and thus we only use this segmentation software for this evaluation.
For simplicity, we only use BrainClustering methods that use Train&Test, and do not consider the
search mode approaches. Note that theoretically one should perform the initial main cluster evalu-
ation again for the T1 Contrast Enhanced sequence, but since the nature of this evaluation is only
preliminary, we simply use four main clusters. In this case, naive approaches like Complementary
cannot be used because there is no obvious signal relationship between T1 Contrast Enhanced and
T1 Weighted.

Figure 6.16 shows the mean squared errors for all data sets. The results of BrainClustering k-
means and BrainClustering Nesting are similar, while Pix2Pix performs worse than it did with T2
Weighted. In general, all methods have a lower performance, as can be seen in Figure 6.17a and in
Figure 6.17b. Patient TCIA10 266 (Figure 6.17a) has an average ranking (0.70 out of a 0.65 average
for all approaches), while patient TCIA02 457 (Figure 6.17b) has a below average ranking (0.47
out of a 0.60 average for all approaches). As we noticed before, the images produced by Pix2Pix
present more structure and are more realistic, but in this case they have more black areas, which
are contoured by lighter areas. Unfortunately, the enhanced rim is what distinguishes a tumor
area in T1 Contrast Enhanced, and thus these areas are recognized as tumors by DeepMedic. The
images produced by BrainClustering do not have a lot of structure and look noisy. However, the
tumor segmentations produced with them is better than the ones produced with Pix2Pix.
In Figure 6.18 we show the rankings for testUK, val and testNGT, while the full evaluation results
are provided in Section B.3. Pix2Pix obtains better results in the testUK data set, while the
BrainClustering algorithms are better in the other sets. The results produced with BrainClustering
k-means are the best among the BrainClustering methods. However, the general performance is
worse than for the T2 Weighted images, which shows that this transformation is harder to capture.
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Figure 6.17: [Best viewed in color] Learned T2 Weighted and respective DeepMedic tumor
segmentation for different approaches.
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Figure 6.18: [Best viewed in color] Comparison of different approaches with respect to the seg-
mentation with four original MRI scans using Dice score and undirected 95% percent Hausdorff
distance on three different regions (Whole Tumor, Tumor Core, Active Tumor). The scores repre-
sent the distribution of 14 patients (testUK), 34 patients (val) and 111 patients (testNGT). For
all measures a higher value indicates a better rank. The values are computed from Figure B.9 and
Figure B.10 for testUK, Figure B.11 and Figure B.12 for val and Figure B.13 and Figure B.14 for
testNGT. The crosses represent the averages, while the thick bars are the medians and the dots
are the outliers.
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In this thesis, we proposed and evaluated two solutions for the MRI translation problem. None of
them is able to produce satisfactory results for all use cases and with every tumor segmentation
software. However, with a more targeted optimization of the parameters with respect to the used
segmentation software and the needed sequences, it is possible to obtain satisfactory results that
can correctly identify the tumor. In most cases, the segmentations produced with all the approaches
were able to correctly pinpoint the location of the tumor, as shown by the high specificity. However,
the tumor classes produced by DeepMedic with a transformed image did not have the same quality
as the ones produced with four original MRI scans. HD-GLIO is more robust, and thus many times
the same quality could be achieved. Surprisingly, a simple method like taking the complement of
T1 Weighted in order to produce T2 Weighted results in good segmentations, even if the obtained
sequence is very different from the actual T2 Weighted image. Pix2Pix produces realistic results
with high structure but with poor colorings in the tumor area, which causes the segmentation to
be worse than the other methods. BrainClustering generates less realistic results, often very noisy
and with a poor local structure, but that can reproduce the general anatomy of the brain and of
the tumors. The best results of BrainClustering can be achieved with BrainClustering k-means,
which is also able to produce results in a very short amount of time. By contrast, the worst results
are obtained with BrainClustering Agglomerative, which is also the slowest method.

T2 Weighted Transformation. Pix2Pix obtains the worst or second-to-worst rankings for the
segmentations with DeepMedic and the worst or second-to-worst rankings in HD-GLIO for testUK
and testNGT, but the best rank for val. In the DeepMedic ground truth rankings most methods
achieve very similar results, except for BrainClustering Agglomerative, which performs very poorly.
The segmentations from HD-GLIO produce more distributed rankings. Complementary always
reaches high ranks.

T1 Contrast Enhanced Transformation. Since our BrainClustering methods are not specifi-
cally implemented for this task, we achieve lower quality results for this transformation. Moreover,
even Pix2Pix struggles at reproducing this mapping, especially because it creates too light areas
that are mistaken for tumors by the segmentation software. In general, we achieve lower scores
than for T2 Weighted in the testUK data set, while the BrainClustering scores for val are similar
to the ones obtained for T2 Weighted. The scores obtained by comparing the original segmentation
of the testNGT data set are also similar to the ones obtained for T2 Weighted.

7.1 Future Work

The evaluation revealed the strengths and the weaknesses of our approaches. The fact that the
results produced with Complementary obtain good segmentations can hint that a clear and distinct
structure is sometimes more important than a perfect coloring of the image. Thus, an improvement
could be to pass our resulting images in some resolution-enhancing software that reduces the present
noise.
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Moreover, we could investigate whether removing the reference image mapping from BrainClus-
tering can produce better results. The BrainClustering mapping method accepts any clustering
algorithm for data of any dimension and any number of clusters. However, we empirically showed
that one-dimensional clustering can produce satisfactory results. Particularly, the hierarchical al-
gorithms that use optimal solutions (Leveled k-means and Leveled Nesting) produce main clusters
that are always sorted in the same order: The first cluster is always the one containing the smallest
values, the second cluster contains larger values, and so on. This entails that the tissues with lower
signals are always in the first cluster, and tissues with the highest signal are always in the last
cluster. However, sometimes images contain points with too high signals, that can disrupt this
logic and create clusterings that are not compatible over the full set of images (as in Figure 4.6).
We have solved this problem using a reference image, but we think it would be beneficial to remove
this mapping from our implementation, since it is not always optimal. This could be achieved by
removing high signals from the brain scans, or by applying a better normalization to our data.
An additional (and more practical) improvement to BrainClustering would be to parallelize the
training, since the clusterings of different brain scans can easily be computed at the same time.
This would significantly decrease the training time.
One way to improve Pix2Pix would be to perform an evaluation and optimization over its param-
eters for our specific use case. Moreover, since Pix2Pix is trained to minimize the absolute loss
with respect to the target image, we could change this objective function such that it minimizes
the loss of the tumor area, which would likely yield better results.
Finally, it would be interesting to evaluate all the possible mappings between MRI images and
even run segmentations using two transformed images and two original scans to fully understand
the potential of this research.
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Clustering Evaluation Appendix A

A.1 Shaded Clustering Results

In this section, we show some images created by the hierarchical clustering algorithms. The Leveled
k-means (Figure A.1a) and the Leveled Nesting (Figure A.1b) result were produced with the same
number of clusters per level. The cluster list given to Leveled Nesting is [201, 3] while the one
given to Leveled k-means is [3, 67]. Both produce a three-level dendrogram with three elements
in the first level and 201 in the second. The lists differ because of the implementation of the two
methods, where Leveled k-means divides each part of the clustering produced by the first number
by the second number, while Leveled Nesting creates two independent clusterings and then maps
them. The products of these two algorithms are very similar, which is not surprising since they
both use k-means1d.
The Nesting procedure creates its own list of cluster amounts: [77, 54, 38, 27, 19, 13, 9, 6, 5, 3]. The
maximum value (kmax) chosen for this instance is 100. Because of the larger number of levels of
this cluster, Figure A.1c has much more color diversity in each main cluster.
The Agglomerative clustering result in Figure A.1d is produced by taking the full dendrogram and
cutting it at the interesting points to remove the unnecessary levels. The chosen leveled list is the
same as the one for Leveled Nesting ([201, 3]). This particular result is different from the previous
ones because the sub clusterings are not sorted. The hierarchical clusterings with k-means1d
always produce sorted results, which creates a smooth shading transition. This same effect could
be realized with the Agglomerative result by sorting each level, but it is not its standard solution.

(a) Leveled k-means (b) Leveled Nesting (c) Nesting (d) Agglomerative

Figure A.1: [Best viewed in color] Comparison of the clusterings obtained with Leveled k-means,
Leveled Nesting, Nesting and Agglomerative for patient 2 (BraTS 19).
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A. Clustering Evaluation

A.2 Agglomerative Comparison

In Figure A.3 and Figure A.4 we present all the evaluation metrics for the linkage evaluation. Note
that this evaluation has been run on the middle transverse slice of the brain and not on the full
volume. The micro precision and recall, the macro precision and recall and the weighted precision
and recall have comparable values. However, in the combinatorial recall there are very different
values, and single is the best method, which is another proof that this method does not fit our
use case. In this case most of the points have been assigned to one single cluster and, similarly
to the case of all for three clusters (Figure 3.2f), this makes the number of combinatorial false
negatives very small. We additionally add some images (Figure A.2) to show how the methods
behave in practice. It is clear that the only image that looks similar to the segmentation is the
one produced by Ward.

(a) Segmented Image (b) single (c) complete (d) average

(e) weighted (f) centroid (g) median (h) Ward

Grey Matter White Matter Cerebrospinal Fluid

Figure A.2: [Best viewed in color] Segmentation and different Agglomerative clusterings for T1
Weighted of patient 5 (BraTS 13).
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Figure A.3: [Best viewed in color] Comparison between different hierarchical clustering metrics using Rand index (RI), adjusted Rand index (ARI), accuracy
(ACC), combinatorial precision and recall (CombPrec, CombRec), micro/macro/weighted precision and recall (Micro/Macro/WeiPrec, Micro/Macro/WeiRec),
adjusted mutual information score (AMI) and Fowlkes-Mallows index (FM). The values are grouped by sequence and represent the average of the scores of the
four segmented patients. For all measures a higher value indicates a better score.
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Figure A.4: [Best viewed in color] Comparison between different hierarchical clustering metrics using Rand index (RI), adjusted Rand index (ARI), accuracy
(ACC), combinatorial precision and recall (CombPrec, CombRec), micro/macro/weighted precision and recall (Micro/Macro/WeiPrec, Micro/Macro/WeiRec),
adjusted mutual information score (AMI) and Fowlkes-Mallows index (FM). The values are grouped by sequence and represent the average of the scores of the
four segmented patients. For all measures a higher value indicates a better score.
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A.3 Comparison of k-means1d, Nesting, Agglomerative

In this section, we present the scores for the evaluation between k-means1d, Nesting and Agglom-
erative for each single patient. In Figure A.6, Figure A.7, Figure A.8 and Figure A.9 we have
respectively the scores for patient 1, 2, 3 and 5. These values have been used to compute the
averages in Figure 3.8. In T1 Contrast Enhanced of patient 1 we obtain almost perfect values.
The values for this patient are generally better than average, but consistent with the ones shown
in Figure 3.8. Patient 2’s T1 Weighted is peculiar, because it is the only T1 Weighted that is
best clustered with Agglomerative. This patient, together with patient 3, achieves the best T1
Contrast Enhanced clustering with Nesting. Patient 3 has very high values for Agglomerative in
T2 Weighted, but all methods are similar when clustering T2 FLAIR. This might be due to the
fact that the T2 FLAIR scan of this patient was partially missing (Figure A.5). This is rather
common because doctors only acquire a partial scan for T2 FLAIR when they know the general
location of a tumor. For patient 5 the best T1 Contrast Enhanced method is Agglomerative. In
T1 Weighted the best method is Nesting and in T2 Weighted the best method is k-means1d.

Figure A.5: T2 FLAIR of patient 3 (BraTS 13) is not complete.
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Figure A.6: [Best viewed in color] Comparison between k-means1d, Nesting and Agglomerative (Ward) using Rand index (RI), adjusted Rand index (ARI), accu-
racy (ACC), combinatorial precision and recall (CombPrec, CombRec), micro/macro/weighted precision and recall (Micro/Macro/WeiPrec, Micro/Macro/WeiRec),
adjusted mutual information score (AMI) and Fowlkes-Mallows index (FM). These values are for patient 1 (BraTS 13) and are grouped by sequence. For all
measures a higher value indicates a better score.
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Figure A.7: [Best viewed in color] Comparison between k-means1d, Nesting and Agglomerative (Ward) using Rand index (RI), adjusted Rand index (ARI), accu-
racy (ACC), combinatorial precision and recall (CombPrec, CombRec), micro/macro/weighted precision and recall (Micro/Macro/WeiPrec, Micro/Macro/WeiRec),
adjusted mutual information score (AMI) and Fowlkes-Mallows index (FM). These values are for patient 2 (BraTS 13) and are grouped by sequence. For all
measures a higher value indicates a better score.
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Figure A.8: [Best viewed in color] Comparison between k-means1d, Nesting and Agglomerative (Ward) using Rand index (RI), adjusted Rand index (ARI), accu-
racy (ACC), combinatorial precision and recall (CombPrec, CombRec), micro/macro/weighted precision and recall (Micro/Macro/WeiPrec, Micro/Macro/WeiRec),
adjusted mutual information score (AMI) and Fowlkes-Mallows index (FM). These values are for patient 3 (BraTS 13) and are grouped by sequence. For all
measures a higher value indicates a better score.
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Figure A.9: [Best viewed in color] Comparison between k-means1d, Nesting and Agglomerative (Ward) using Rand index (RI), adjusted Rand index (ARI), accu-
racy (ACC), combinatorial precision and recall (CombPrec, CombRec), micro/macro/weighted precision and recall (Micro/Macro/WeiPrec, Micro/Macro/WeiRec),
adjusted mutual information score (AMI) and Fowlkes-Mallows index (FM). These values are for patient 5 (BraTS 13) and are grouped by sequence. For all
measures a higher value indicates a better score.
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Mapping Evaluation Appendix B

B.1 Choice of Main Clusters

In this section, we present the metrics used to evaluate the performance of the segmentation
produced by DeepMedic and HD-GLIO with different numbers of main clusters. In Figure B.1
and Figure B.2 we present the full comparison of the evaluation metrics comparing the tumor
ground truth to the segmentations of DeepMedic and HD-GLIO with a transformed image created
by BrainClustering k-meanswith different numbers of main clusters. The number of sub clusters
is always 100. We also present the values obtained by the segmentation with four original images
(in blue).
The segmentation with the original images is indeed better than the substitution, as can be seen
by all measures (except in the accuracy of HD-GLIO, but this measure could also be improved by
random chance). The results of other measures diverge: For the case of sensitivity, specificity and
Dice score three clusters seems to be a wiser choice, but we have better Hausdorff distances using
four clusters.
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Figure B.1: [Best viewed in color] Comparison of BrainClustering k-means (search) with different
numbers of main clusters with respect to the true tumor segmentation. The metrics are accuracy
(ACC) for the produced labels and sensitivity, specificity and Dice score on three different regions
(Whole Tumor, Tumor Core, Active Tumor). The scores represent the distribution of 14 patients
from testUK. For all measures a higher value indicates a better score. The crosses represent the
averages, while the thick bars are the medians and the dots are the outliers.
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Figure B.2: [Best viewed in color] Comparison of BrainClustering k-means (search) with dif-
ferent numbers of main clusters with respect to the true tumor segmentation. The metrics are
undirected Hausdorff distance and undirected 95% percent Hausdorff distance on three different
regions (Whole Tumor, Tumor Core, Active Tumor). The scores represent the distribution of 14
patients from testUK. For all measures a lower value indicates a better score. The crosses represent
the averages, while the thick bars are the medians and the dots are the outliers.

B.2 Transformed T2 Weighted Evaluation

In this section, we present additional measures for the evaluation of the T2 Weighted sequences
generated with our approaches. The evaluation in this appendix refers to the segmentation that can
be produced using the transformed images and DeepMedic and HD-GLIO. In fact, we assess the
quality of the segmentation that is produced with the real T1 Weighted, T1 Contrast Enhanced
and T2 FLAIR and a generated T2 Weighted. For the data sets for which we have the tumor
ground truth (testUK and val) we present a comparison with the real segmentation, while for
testNGT we compare the results to the original segmentation with four images. In the first case
we also present the values obtained with the original segmentation (in blue).
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B.2. Transformed T2 Weighted Evaluation
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Figure B.3: [Best viewed in color] Comparison of different approaches for the segmentation
obtained with a transformed T2 Weighted with respect to the true tumor segmentation. The
metrics are accuracy (ACC) for the produced labels and sensitivity, specificity and Dice score
on three different regions (Whole Tumor, Tumor Core, Active Tumor). The scores represent the
distribution of 14 patients from testUK. For all measures a higher value indicates a better score.
The crosses represent the averages, while the thick bars are the medians and the dots are the
outliers.

First, we consider the results for the testUK data set (Figure B.3 and Figure B.4). Let us first
consider the bounded measures, which are collected in Figure B.3. Both for DeepMedic and HD-
GLIO all approaches have very high specificity, meaning that the healthy brain voxels are mostly
classified correctly. In DeepMedic the segmentation with the original images is always clearly the
best, while in HD-GLIO some approaches achieve better results (for example, BrainClustering k-
means’s Dice score in Whole Tumor). The accuracy measure in HD-GLIO produces contradicting
results with respect to the other measures: BrainClustering Agglomerative has the best accuracy,
but is the method with the worst scores in general. The search BrainClustering methods produce
worse results than their Train&Test counterparts in HD-GLIO, while the results are similar in
DeepMedic. Pix2Pix and Complementary perform similarly, but with Complementary being better
most times.
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Figure B.4: [Best viewed in color] Comparison of different approaches for the segmentation
obtained with a transformed T2 Weighted with respect to the true tumor segmentation. The
metrics are undirected Hausdorff distance and undirected 95% percent Hausdorff distance on three
different regions (Whole Tumor, Tumor Core, Active Tumor). The scores represent the distribution
of 14 patients from testUK. For all measures a lower value indicates a better score. The crosses
represent the averages, while the thick bars are the medians and the dots are the outliers.

We now move to the unbounded measures, which are presented in Figure B.4. We learn that in
DeepMedic the reproduced images yield much worse distances in the Active Tumor area, while in
the other regions the distances are worse, but still rather similar. This is reasonable considering
that the resulting images proposed in Chapter 6 have large areas of Active Tumor. However, this
is not the case for HD-GLIO, where the distances are worse for the transformed images, but in all
regions equally.
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Figure B.5: [Best viewed in color] Comparison of different approaches for the segmentation
obtained with a transformed T2 Weighted with respect to the true tumor segmentation. The
metrics are accuracy (ACC) for the produced labels and sensitivity, specificity and Dice score
on three different regions (Whole Tumor, Tumor Core, Active Tumor). The scores represent the
distribution of 34 patients from val. For all measures a higher value indicates a better score. The
crosses represent the averages, while the thick bars are the medians and the dots are the outliers.

The results for the val data set are shown in Figure B.5 and Figure B.6. Once more, we first
discuss the bounded measures (Figure B.5). The results for this data set present more outliers in
the Active Tumor area. All approaches are equally distributed for DeepMedic, and no approach is
clearly outperforming the others. By comparison, for HD-GLIO Pix2Pix is the best approach. In
the distance measures (Figure B.6) most approaches are still equally distributed for DeepMedic,
but now Complementary has the best distances. Additionally, it has also the shortest distances
for HD-GLIO.
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Figure B.6: [Best viewed in color] Comparison of different approaches for the segmentation
obtained with a transformed T2 Weighted with respect to the true tumor segmentation. The
metrics are undirected Hausdorff distance and undirected 95% percent Hausdorff distance on three
different regions (Whole Tumor, Tumor Core, Active Tumor). The scores represent the distribution
of 34 patients from val. For all measures a lower value indicates a better score. The crosses
represent the averages, while the thick bars are the medians and the dots are the outliers.

For the testNGT data set we perform a different evaluation, since we do not have the ground. In
this case the measures are computed with respect to the segmentation that can be achieved with
four original images. We first look at the bounded measures (Figure B.7). The Dice scores for
BrainClustering and Complementary are similar, while Pix2Pix performs worst. By contrast, it
obtains the best sensitivity scores. In HD-GLIO all approaches perform similarly, but Pix2Pix is
the best for most measures. According to the distance measures (Figure B.8) in DeepMedic Pix2Pix
obtains the worst values. Similarly, Pix2Pix and BrainClustering k-means have the worst distances
in HD-GLIO. In both segmentations the results of complementary have the best distances, but in
DeepMedic the values of Complementary, BrainClustering k-means and BrainClustering Nesting
are similar.
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Figure B.7: [Best viewed in color] Comparison of different approaches for the segmentation
obtained with a transformed T2 Weighted with respect to the true tumor segmentation. The
metrics are accuracy (ACC) for the produced labels and sensitivity, specificity and Dice score
on three different regions (Whole Tumor, Tumor Core, Active Tumor). The scores represent the
distribution of 111 patients from testNGT. For all measures a higher value indicates a better score.
The crosses represent the averages, while the thick bars are the medians and the dots are the
outliers.
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Figure B.8: Comparison of different approaches for the segmentation obtained with a transformed
T2 Weighted with respect to the true tumor segmentation. The metrics are undirected Hausdorff
distance and undirected 95% percent Hausdorff distance on three different regions (Whole Tumor,
Tumor Core, Active Tumor). The scores represent the distribution of 111 patients from testNGT.
For all measures a lower value indicates a better score. The crosses represent the averages, while
the thick bars are the medians and the dots are the outliers.
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B.3 Transformed T1 Contrast Enhanced Evaluation

In this section, we discuss the results of the Pix2Pix, BrainClustering k-means and BrainClustering
Nesting (both only in Train&Test mode) approaches with respect to the recreation of the T1
Contrast Enhanced sequence. The evaluation metrics contained in this appendix refer to the
quality of the segmentation that can be achieved using the real T1 Weighted, T2 Weighted and T2
FLAIR and a reproduced T1 Contrast Enhanced. The evaluation of the data sets with the tumor
ground truth (testUK and val) is based on the comparison with the real segmentation, while the
evaluation for testNGT is based on the comparison with the segmentation with four original images.
For testUK and val we also present the values for the segmentation produced with four original
images (in blue). Once again, the evaluation is divided according to the data sets.

First, we examine the testUK data set (Figure B.9 and Figure B.10). Pix2Pix has the best
distances and the best scores. However, the BrainClustering methods have higher sensitivity in all
three regions, meaning that the BrainClustering methods identify a larger portion of the tumorous
voxels.

Next, we observe the results for the val data set (Figure B.11 and Figure B.12). The BrainClus-
tering methods still have a better sensitivity, but also have a better accuracy and Dice score, which
means that in this data set BrainClustering has a higher precision. BrainClustering also achieves
better distances for this data set. Note that the difference between this data set and the previous
one is that the ground truth comes from different sources, and thus it is completely reasonable
that some methods are better with a certain ground truth.

Lastly, we compare the segmentations produced from the transformed T1 Contrast Enhanced with
the segmentation produced with four original images for the testNGT data in Figure B.13 and
Figure B.14. The results are similar to the ones of the val data set, and the BrainClustering
methods obtain better (or equal) scores in all metrics.
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Figure B.9: [Best viewed in color] Comparison of different approaches for the segmentation
obtained with a transformed T1 Contrast Enhanced with respect to the true tumor segmentation.
The metrics are accuracy (ACC) for the produced labels and sensitivity, specificity and Dice score
on three different regions (Whole Tumor, Tumor Core, Active Tumor). The scores represent the
distribution of 14 patients from testUK. For all measures a higher value indicates a better score.
The crosses represent the averages, while the thick bars are the medians and the dots are the
outliers.
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Figure B.10: [Best viewed in color] Comparison of different approaches for the segmentation
obtained with a transformed T1 Contrast Enhanced with respect to the true tumor segmentation.
The metrics are undirected Hausdorff distance and undirected 95% percent Hausdorff distance
on three different regions (Whole Tumor, Tumor Core, Active Tumor). The scores represent the
distribution of 14 patients from testUK. For all measures a lower value indicates a better score.
The crosses represent the averages, while the thick bars are the medians and the dots are the
outliers.
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Figure B.11: [Best viewed in color] Comparison of different approaches for the segmentation
obtained with a transformed T1 Contrast Enhanced with respect to the true tumor segmentation.
The metrics are accuracy (ACC) for the produced labels and sensitivity, specificity and Dice score
on three different regions (Whole Tumor, Tumor Core, Active Tumor). The scores represent the
distribution of 34 patients from val. For all measures a higher value indicates a better score. The
crosses represent the averages, while the thick bars are the medians and the dots are the outliers.
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Figure B.12: [Best viewed in color] Comparison of different approaches for the segmentation
obtained with a transformed T1 Contrast Enhanced with respect to the true tumor segmentation.
The metrics are undirected Hausdorff distance and undirected 95% percent Hausdorff distance
on three different regions (Whole Tumor, Tumor Core, Active Tumor). The scores represent the
distribution of 34 patients from val. For all measures a lower value indicates a better score. The
crosses represent the averages, while the thick bars are the medians and the dots are the outliers.
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Figure B.13: [Best viewed in color] Comparison of different approaches for the segmentation
obtained with a transformed T1 Contrast Enhanced with respect to the true tumor segmentation.
The metrics are accuracy (ACC) for the produced labels and sensitivity, specificity and Dice score
on three different regions (Whole Tumor, Tumor Core, Active Tumor). The scores represent the
distribution of 111 patients from testNGT. For all measures a higher value indicates a better score.
The crosses represent the averages, while the thick bars are the medians and the dots are the
outliers.

HD-W
T

HD95-
W

T

HD-T
C

HD95-
TC

HD-AT

HD95-
AT

0

50

100

m
m

Original Segmentation vs. Mapping with DeepMedic Segmentation

Pix2Pix BC k-means BC Nesting

Figure B.14: [Best viewed in color] Comparison of different approaches for the segmentation
obtained with a transformed T1 Contrast Enhanced with respect to the true tumor segmentation.
The metrics are undirected Hausdorff distance and undirected 95% percent Hausdorff distance
on three different regions (Whole Tumor, Tumor Core, Active Tumor). The scores represent the
distribution of 111 patients from testNGT. For all measures a lower value indicates a better score.
The crosses represent the averages, while the thick bars are the medians and the dots are the
outliers.
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