Free University of Bozen-Bolzano
Faculty of Computer Science

Bachelor in Computer Science and Engineering

Capturing Semantic Similarity
in Querying User Reviews

Bachelor Dissertation of
Giulia Baldini

Supervisor:
Prof. Dr. Mouna Kacimi E1 Hassani

Second Supervisor:
Prof. Dr. Werner Nutt

July 2018

Acknowledgment

A big thank you to mum and dad, whose dream always was to see me in this moment. You
supported me and stood by my side in every decision I made, and I could never be more thankful
or feel more love. To Elisa, who has been like a mum to me. You taught me how to be strong
and had a home for me when I felt like I did not have one. To her beautiful daughter Camilla, my
oldest friend and confidant. To my amazing Jonas, who has been the most important part of my
life in the last year. To the very long list of friends I have in Bolzano, who patiently kept listening
to my nonsense for the past three years. To England, to Spain, to Germany. To everyone I met in
the last three years, who has shared at least a bit of this path with me.

GIULIA BALDINI

Bolzano
July 2018

Abstract

Travel websites give users the opportunity to review hotels by writing comments. However,
there is no standardised way to do so, making it hard for other users to retrieve the information
they want in a structured way. Moreover, comments are written by visitors coming from very
different cultural and social backgrounds. As a result, two reviews describing the same hotel
in the same manner will use very different words. In this work we unite semantics differences
in words by using query expansion. In that context we extend the system ToKnow, developed
in an internal project at Unibz, which has the aim to collect and index hotel reviews such that
they can be queried easily. Here user opinions are mostly described with adjectives, which
define an asset of the hotel with many different shades. Our aim is to make all the similar
shades accessible to a querying user. We explore the tools that allow to investigate semantic
similarity and extend them by counting in context. Furthermore, we propose new ranking
methods based on static scales and learned scales. Finally we evaluate the effectiveness of
our method on a user-generated ground truth using statistics and evaluation measures such
as precision and recall.

I siti di viaggi offrono agli utenti la possibilita di recensire hotel scrivendo commenti. Tut-
tavia, non esiste nessun modo standardizzato per farlo, il che rende difficile recuperare le
informazioni desiderate in modo strutturato. Inoltre, i commenti dimostrano una grande vari-
abilita, in quanto scritti da visitatori provenienti da contesti culturali e sociali molto diversi.
Di conseguenza, due recensioni che descrivono lo stesso hotel nello stesso modo utilizzeranno
parole molto diverse. In questo lavoro uniamo le differenze semantiche delle parole utilizzando
la metodologia dell’espansione di query. In questo contesto estendiamo il sistema ToKnow,
sviluppato in un progetto interno di Unibz, che ha lo scopo di raccogliere e indicizzare le recen-
sioni degli hotel in modo che possano essere facilmente consultate. Qui le opinioni degli utenti
sono per lo piu descritte con aggettivi, che definiscono una risorsa dell’hotel con molte sfuma-
ture diverse. Il nostro obiettivo ¢ quello di rendere tutte le tonalita simili accessibili all’utente
che effettua la ricerca. Esploriamo gli strumenti che permettono di indagare la somiglianza
semantica e li estendiamo tenendo conto del loro contesto. Inoltre, proponiamo nuovi metodi
di classificazione basati su static scales e learned scales. Infine valutiamo D’efficacia dei nostri
metodi su una ground truth generata tramite un questionario, usando statistiche e misure di
valutazione come precisione e recupero.

Reise-Websites bieten ihren Nutzern die Méglichkeit, Hotels durch Kommentare zu bewerten.
Dafiir gibt es jedoch keinen standardisierten Weg, sodass es fiir andere Nutzer schwierig ist,
die gewlinschten Informationen in strukturierter Form abzurufen. Dartiber hinaus werden
Kommentare von Personen mit stark verschiedenen kulturellen und sozialen Hintergriinden
verfasst. Deswegen konnen zwei Bewertungen, die dasselbe Hotel auf die gleiche Art und Weise
beschreiben, sehr unterschiedliche Worter verwenden. In dieser Arbeit vereinen wir semantis-
che Unterschiede von Wértern, indem wir Suchanfragen erweitern. In diesem Zusammenhang
entwickeln wir das System ToKnow weiter, welches in einem internen Projekt der Universitat
Bozen entstanden ist. Dieses hat zum Ziel, Hotelbewertungen zu sammeln und zu indexieren,
sodass sie leicht abgefragt werden kénnen. Meist driicken die Nutzer ihre Meinung mit Ad-
jektiven aus, die einen Aspekt des Hotels in vielen verschiedenen Auspridgungen beschreiben
konnen. Unser Ziel ist es, einem anfragenden Benutzer alle dhnlich ausgepréigten Meinungen
leicht zugénglich zu machen. Wir erforschen dazu die Werkzeuge, die das Untersuchen von se-
mantischer Ahnlichkeit erméglichen, und erweitern diese durch Zihlen im Kontext. Dariiber
hinaus schlagen wir neue Rankingmethoden vor, die sowohl auf statischen Skalen als auch
auf erlernten Skalen basieren. Abschliefend evaluieren wir die Wirksamkeit unserer Metho-
den mithilfe von Daten aus einer Benutzerstudie und statistischen Evaluationsmaflen wie der
Genauigkeit und Sensitivitét.

iii

Contents

List of Figures

List of Tables

1 Introduction
2 Related Work
2.1 WordNet e e e e e e
2.2 SentiWordNet e
2.3 Word2Vec e
2.4 SpaCy . . . e
3 Problem Description
3.1 ToKnow e e e
3.2 The Problem
4 Approaches
4.1 Identifying Features and Adjectives, .
4.2 Finding Synonyms and Similarities
4.2.1 Lexical Approaches
4.2.2 Word-Vector Approaches
4.3 Expanding and Ranking Adjectives According to Intensities
4.3.1 Ranking with Polarities L.
4.3.2 Ranking with Word Vectors
4.4 Integrating Synonyms into Queries
4.4.1 Expanding with Synonyms oo
4.4.2 Expanding with Scales L oL oo
5 Evaluation
5.1 Looking at the Numbers L
5.2 Building the Ground Truth L
5.3 Comparing the Results L
5.4 Lesson Learned e e
6 Conclusion and Future Work
Bibliography

vi

vii

S ULk W W

-

10
11
13
13
14
15
16
17

19
19
21
22
25

27

29

List of Figures

1.1

2.1
2.2
2.3
24

3.1
3.2
3.3

4.1
4.2
4.3

5.1
5.2
5.3

5.4

Results given by the ToKnow system while looking for good breakfast and fantastic
location. e e e e e e e e e e e

Results of the search for the word nice on WordNet [17].
The structure of the WordNet lexical database.
Search of the similarity between thief and robber in WordNet [16].
Positions in which the vectors might be with respect to each other.

Dependencies from CoreNLP [8].
Example of synonym and similar adjective for the triple staff is trustworthy.
Example of not synonym and similar adjective for the triple breakfast is broad.

Representation of the sum of the vectors “good” and “breakfast” in two dimensions.
Visualisation in two dimensions of vector sum and difference to retrieve “queen”.
[lustration of how expansion is carried out on scales. The dotted arrows show the
directions of the expansion considering if the adjective has a positive or a negative
polarity. e

Distribution of synonyms for the WordNet approaches.
Distribution of synonyms for the SpaCy approaches.
A comparison of the approaches with the most synonyms from the two categories for
the feature breakfast.
Result of users’ preference over the “tasty” scale.

vi

—_

S O W

List of Tables

5.1
5.2
5.3
5.4
5.5

5.6

5.7

5.8

Average of synonyms for the WordNet methods.
Average of synonyms for the SpaCy methods.
Weighted average of synonyms for the WordNet methods.
Weighted average of synonyms for the SpaCy methods.
Pairs considered synonyms by the users using different thresholds for similarity. In the
first line, setting only average > threshold. In the second line, average > threshold
and variance < 1.5. e e e e e e
Pairs considered synonyms by the users using the WordNet methods using 3.5 as a
threshold. o L e
Pairs considered synonyms by the users using the SpaCy methods using 3.5 as a thresh-
old and 0.7 as cosine similarity threshold.
Values of Precision, Recall and F-score for different thresholds for the methods with
the highest number of synonyms (SpaCy2Feat and SpaCyDocs).

vii

23

24

24

Introduction 1

We are in the era of online businesses, where it is not possible to see or touch a product before
buying it. Thus, consensus is based on reviews. They can express appreciation, enthusiasm or
criticism towards some particular business. Particularly in the hotel domain, it has become very
common to look at reviews before choosing one hotel instead of another.

Platforms based on reviews, such as TripAdvisor', offer the opportunity to review a business both
with stars or actual text paragraphs describing user perception of the stay. Unfortunately, many
users are not consistent at giving stars; in fact, there might be reviews with exclusively positive
words but only three stars out of five. In this context, Poggio et al. [l4] created the system
ToKnow, that does not evaluate hotels by number of stars, but by calculating the positiveness of
reviews and reacts according to search terms given by users.

With the help of ToKnow, a user that considers the quality of the breakfast and of the location to
be the discriminant for choosing a hotel can search for “good breakfast and fantastic location”. The
system will return a list of ranked hotels according to the query, then for each hotel it is possible
to access its list of reviews, which are ordered by relevance and positiveness (Figure 1.1). However,
there are many ways to express concepts such as “good breakfast”; one person might say “nice”,
another one “lovely”. These differences in speech depend on age, country, mother tongue and many
other factors. Our work aims to improve the existing ToKnow system allowing related-adjective
search. In this way, the example user from before with the same search terms will also obtain all
the reviews mentioning “nice breakfast”, “great breakfast”, “lovely breakfast”, “excellent location”,
“perfect location”, etc.

lwww.tripadvisor.com

ToKNOW

Opinion search by ho:

i Here you can search by specifying different features and the opinions associated to such features.

Hotel Keyword(s) Results
[g187791-d191099] Albergo del Senato (Rome) v good breakfast and fantastic location 10 v
@ Opinion search
¥ Match exact features @ Sort results by polarity

Showing 10 of 268 reviews (0.00096703 seconds)

[1] Brilliant Customer Sevice Jook ok
1D #8850540 - September 21,2007 TF-IDF: 2.9972, Polarity: 0.3224

[Hotel ID: g187791-d191099] Albergo del Senato (Rome, Italy)

Absolutely fantastic - you just can't beat opening the shutters and gazing on the Pantheon.The and the room itself were somewhere
between good and very good . There are 2 reasons for staying here - a central location which is in striking distance of just about everything that you would want to see in
Rome and most importantly customer service as good as any hotel that i've ever stayed in. Little touches like a bottle of bubbly on your birthday and the consistently friendly
and helpful attitude of the staff are what made our stay perfect

FIGURE 1.1: Results given by the ToKnow system while looking for good breakfast and fantastic
location.

www.tripadvisor.com

1. INTRODUCTION

This thesis handles the problem of finding similarity between adjectives by heuristically trying
different approaches. We will discuss lexical approaches (subsection 4.2.1) and vector oriented
approaches (subsection 4.2.2). In these second ones, we will also consider the context of the
feature to which an adjective refers, such as “breakfast”. We will also show our proposals to
expand queries in section 4.3. In chapter 5 we will conduct extensive quantitative and qualitative
tests on the retrieved data.

Related Work 2

Our work can be located in the the Natural Language Processing (NLP) area. In this section we
discuss all the technologies that aim to find similarity between words.

2.1 WordNet

WordNet [12, 5] is a lexical database where each English word can be defined with many synonym
sets (synsets) in the WordNet vocabulary, which are used to capture the meaning of that word
in different contexts. Looking at the words contained in a synset, it is possible to find word
synonyms. For example we can have a look at the results given for the word “nice” (Figure 2.1).
It can be a noun (and be a city in France), or can be an adjective and mean pleasant or socially
or conventionally correct.

Figure 2.2 shows the standard structure for an adjective in this database. Every word has many
synsets, which correspond to the different semantic meanings that a word can have. Each synset
is a set of lemmas with related meanings. A lemma is the canonical form of a word, such as “thief”

WordNet Search - 3.1

Word to search for: nice | search wordNet |

Display Options: | (Select option to change) ¥ || Change |
Key: "S:" = Show Synset (semantic) relations, "W:" = Show Word (lexical) relations
Display options for sense: (gloss) "an example sentence”

Noun

= S:(n) Nice (a city in southeastern France on the Mediterranean; the leading resort
on the French Riviera)

Adjective

s S: (adj) nice (pleasant or pleasing or agreeable in nature or appearance) "what
a nice fellow you are and we all thought you so nasty"- George Meredith; "nice
manners"; "a nice dress”; "a nice face"; "a nice day"; "had a nice time at the
party”; "the corn and tomatoes are nice today"

o see also

o similar fo

o aitribute

o anfonym

o derivationally refated form
S: (adj) decent, nice (socially or conventionally correct; refined or virtuous) "from a
decent family"; "a nice girl"
S: (adj) nice, skillful (done with delicacy and skill) "a nice bit of craft"; "a job requiring
nice measurements with a micrometer”; "a nice shot"
S: (adj) dainty, nice, overnice, prissy, squeamish (excessively fastidious and easily
disgusted) "too nice about his food to take to camp cooking"; "so squeamish he
would only touch the toilet handle with his elbow”

FIGURE 2.1: Results of the search for the word nice on WordNet [17].

2. RELATED WORK

Word
L Synset

t Lemmas
Attributes

— See Also
t— Similar To

— Attribute

+— Antonyms

+— Derivationally Related Forms

—— ...

FIGURE 2.2: The structure of the WordNet lexical database.

is the lemma of “thieves”. Lemmas belonging to the same synset can be seen as actual synonyms.
Looking at our example in Figure 2.1, “decent” and “nice” are lemmas for the second synset.

A synset is named after its most common lemma. Since more than one synset might have the same
lemma, a sense is added to the name. The sense is an integer identifying the frequency of use of a
synset, where lower numbers indicate a high frequency. The most common sense is numbered one.
Synsets also have attributes; each of these might exist or not depending on the synset:

e The “see also” attribute refers to synsets which do not contain the original word as lemma
but have the same meaning. For example, “good” has “best” as one of its “see also” synsets.

e The “similar to” attribute contains synsets that are related to the synset. For example,
“satisfactory” is a “similar to” synset of “good”.

e The “attribute” refers to the quality that the synset describes. For example, for “big” it is
“size”.

e The “antonym” attribute contains all the words that are antonyms of that specific synset.

e The “derivationally related forms” are terms that have the same root forms and are seman-
tically related. For example, “largeness” is a “derivationally related form” of “large”.

WordNet has a similarity function for verbs and nouns. In fact, those have a hierarchical structure
which allows WordNet to calculate the shortest path between two words. This path is calculated
with different measures, as it can be seen in Figure 2.3.

Unfortunately, adjectives are not organised in this structure, and thus the results of these similarity
functions yield nothing. The only two measures that can be retrieved are the Lesk [7] and the Hirst
and St-Onge (HSO) [6] measures. The Lesk measure finds how many overlaps there are between
the WordNet definitions of the two words. The HSO measure identifies links between the WordNet
synsets of the two words. However, the computational cost for both these measures is quite high
and they rely heavily on the synsets definitions.

It is also possible to convert adjectives to nouns using “derivationally related forms”, and then use
the similarity functions mentioned before. However, many synsets do not have these forms, so in
practice it is not possible to retrieve many similar adjectives.

2.2 SentiWordNet

SentiWordNet is a lexical resource for opinion mining [3, 1]. It builds on WordNet by assigning
three sentiment scores to each synset: positivity, negativity, objectivity. All three scores are
€ [0,1] and sum up to 1, but only positivity and negativity are defined; objectivity is calculated
as 1 — positivity — negativity. The scores describe how objective, positive, and negative the terms
contained in the synset are.

2.3. Word2Vec

WS4J Demo
W54 (WordMet Similarity for Java) measures semantic similarity/relatedness between words.
Type in texts below, or use: | example words | | example sentences |

1. Input mode * Word Sentence

2. Word1 thief

3. Word2 robber

4. Submit | Calculate Semantic Similarity |
Summary

wup(thief#n#1 , robber#n#1) = 0.9630
jen(thief#n#1 , robber#n#1) = 0.5139
Ich(thief#n#1 , robber#n#1) = 2.9957
lin(thief#n#1 , robber#n#1) = 0.8941
res(thief#n#1 , robber#n#1) = 8.2104
path(thief#n#1 , robber#n#1) = 0.5000
lesk(thief#n#1 , robber#n#1) = 466

hso(thief#n#1 , robber#n#1)= 4

FIGURE 2.3: Search of the similarity between thief and robber in WordNet [16].

This tool adds a second power to WordNet; it is now possible to order words according to their
polarity (that is, according to these scores). We will show a way to order reviews based on this
technology.

2.3 Word2Vec

In language modeling, word vectors represent words or phrases in a multidimensional space.
Word2Vec [11] gives the possibility to create word-vector models with sentences as an input, which
influence heavily the positions of the vectors in the space. Since it assigns a vector to each word,
they all start from the same point, which by definition is 0% where d is the number of dimensions.
This system uses the cosine similarity to measure the similarity between two vectors. The posi-
tioning of the words in space and therefore their similarity is based on the context in which they
appear. For example, in the sentences “the breakfast at the hotel was good” and “the breakfast at
the hotel was bad”, the words good and bad are used in the same way, which means that they will
appear as similar. The concept of cosine similarity comes from the dot product or scalar product.

The scalar product between two vectors @ and b is defined as:

a-b=|lall-[|b] - cos(0) (2.1)
and thus their cosine is:

a-b

[lal| - [0l

Cosine Similarity = cos(d) =

The positions of the vectors with respect to each other can be grouped in three cases (Figure 2.4):

e Two vectors are related when they point in a similar direction, as in Figure 2.4a. In this case,
cos(0) is very close to 1. We can consider two related vectors synonyms.

o Two vectors are unrelated if the angle between them is 90° (Figure 2.4b). In such case cos(6)
will be very close to 0. These vectors have very different meaning or context.

2. RELATED WORK

(a) Related vectors. (b) Unrelated vectors. (c) Opposite vectors.

FIGURE 2.4: Positions in which the vectors might be with respect to each other.

o Two vectors are opposites if the angle between them is close to 180° and so cos(f) is close
to -1 (Figure 2.4c). In this case the vectors might have something in common, but in an
opposite fashion.

After this analysis we can conclude that the Cosine Similarity cos(0) € [—1,1].

2.4 SpaCy

SpaCy! is based on Word2Vec and provides many useful tools in the NLP area. By default, it
uses 300-dimensional vectors trained on the Common Crawl® corpus using the GloVe algorithm
[13]. Like Word2Vec, it also measures similarity by calculating the cosine between word vectors.

Our work can be seen as a similarity quest too; in fact, we will use each of these systems to
find similarity or synonyms between adjectives in the context of features.

Lhttps://spacy.io/
2https://commoncrawl.org/

https://spacy.io
https://commoncrawl.org/

Problem Description 3

Here we give a more technical overview of the ToKnow system, to then present a deeper and more
precise description of our problem, which will be done in the second subsection of this chapter.

3.1 ToKnow

As previously mentioned, ToKnow is the system we base our research on. The idea is to index
hotel reviews using triples, where triples are three-word tuples describing a feature, which is some
particular asset of a hotel. Examples of triples for Figure 1.1 are “breakfast is good” and “location
is fantastic”.

The input given by users is transformed into triples and used for retrieving the most interesting
hotels in whose reviews the triple is somehow mentioned.

ToKnow exploits the StanfordNLP tool [9] to extract dependency trees of sentences and then
extracts triples thanks to custom-defined rules. These rules consist in finding relations between
features and the sorrounding parts of a sentence.

Each triple is considered either a factual triple or an opinionated triple. The first kind is used to
describe the reality of a hotel, such as “hotel in rome”, “room with view” and “hotel near train
station”. The second kind, instead, expresses the writer’s opinion, such as “breakfast is good” and
“room is nice”.

With the aim of finding similarity, factual triples are not very interesting. In fact, they mostly
take into account nouns, which do not have many similar words because there is only a certain
number of ways in which one can express the word “hotel” in natural languages. On the contrary,
in opinionated triples 94% of the third terms are adjectives and in the case in which they are
not, the triples are mostly of the type “condition is luggage” or “pizza is place”, which are not
semantically interesting. Adjectives have more shades and tones, which makes them very suitable
for finding similarity.

Opinionated triples are originated by a very common form in natural languages: adjective phrases.
They can appear in two forms; it can either be a noun plus a copula or an adjective followed by a
noun.

In Figure 3.1a, we can see that “is” is a third person regular present (VBZ), “breakfast” is a noun,
singular (NN) and “good” is an adjective (JJ). The cop arrow indicates that good is the copula of
the verb, and that breakfast is its nominal subject (nsubj).

In Figure 3.1b good is the adjective and breakfast is the noun; good acts as an adjectival modifier
(amod) of the noun and modifies the meaning of breakfast adding a more positive value to it.

In ToKnow, both forms are translated into the opinionated triple “breakfast is good”.

Each of these triples is now saved with a pointer to the reviews and the hotels to which it belongs;
in this way it is possible to retrieve the reviews when a triple is queried.

3.2 The Problem

We find interesting the need of capturing semantic sense instead of mere keywords, and thus the
main objective of this work is to find synonyms or similarity and to expand keyword searches. We

7

3. PROBLEM DESCRIPTION

nsubj »-amod
AT JJ

—_—
—_—— =
breakfast is good good breakfast
(a) Dependencies of breakfast is good. (b) Dependencies of good breakfast.

FIGURE 3.1: Dependencies from CoreNLP [3].

staff is trustworthy |

SYNONYM SIMILAR

staff is reliable | | staff is competent |

FIGURE 3.2: Example of synonym and similar adjective for the triple staff is trustworthy.

breakfast is broad

NOT SYNONYM SIMILAR

breakfast is spacious | | breakfast is rich |

FIGURE 3.3: Example of not synonym and similar adjective for the triple breakfast is broad.

consider two words synonyms, if they are related according to the English dictionary. However,
in our particular area of application that is user reviews, we might also be interested in finding
similarity, defined as the relation between some words given a specific context, which is a feature
in our case. Given the data of the ToKnow system, for each triple (f,a) of the form “feature is
adjective”, where f is the feature and a is the adjective, we have to find another adjective al of a
triple (f,al) such that either synonym(a, al) or similar(a, al) returns true.

Figure 3.2 shows how for the adjective “trustworthy” alone, we can consider the adjective “reliable
alone a synonym. In this particular case, we can easily see how both adjectives express the same
meaning when related to the feature “staff”. However, there are cases in which a synonym of an
adjective might not really be related to the feature (Figure 3.3). Going back to Figure 3.2, it can
be seen how “trustworthy” and “competent” are not strictly synonyms, but they can be considered
as similar when the feature “staff” is taken into account. Since determining the context in which
an adjective is used is very hard, we propose to use both of these approaches.

After finding synonyms, we aim to expand queries. This means that, starting from a triple ¢
queried by the user, we generate some triples t1,ts,...,t, where the third term is a synonym of
the third term of ¢. The system will then be asked to return the hotels whose reviews mention
these triples (i.e. t,t1,%a,...,t,). This concept is called query expansion. To produce these triples,
we present lexical approaches (subsection 4.2.1), where we try to find synonym using WordNet,
and word-vector approaches (subsection 4.2.2), which will count in the context of the feature. We
will also propose some ranking methods after the triple expansion.

In our work we use the TripAdvisor reviews of 2015 for the city of Rome as the underlying dataset.
This only acts as a proof of concept, since it could be applied to any city. The same goes for
ToKnow: even though we base our research on it, our work could be used for any other system.
Each of the proposed methods is written in Python 2.7 and the data is stored in JSON files, as it
is done in ToKnow.

2

Approaches 4

In this chapter we present the approaches we considered to find semantic similarity between adjec-
tives. We start mentioning how we cleaned the input data. Then, we will go through the lexical
approaches, that is, the ones that use the lexical database WordNet. In the following section we
describe the word-vector methods in which we use SpaCy. Finally, we present some techniques
that allow our approaches to be integrated into the ToKnow system.

4.1 Identifying Features and Adjectives

In the context of opinionated triples, at the beginning the data had a total of 71,487 features and
28,1505 triples, which results in an average of 4 triples per feature. This very low number is due
to the fact that many features are misspelled, and thus, they are not recognised as the same word.
In addition to this issue, we also wanted to speed up the synonym finding process, so we decided
to perform triple cleansing.

We started by checking if the features were words in WordNet, so that we could leave out the
spelling errors, the presence of symbols and non-existing words. After this first action, the features
were down to 4,817. After that, we checked if all opinions were adjectives. After this last check,
there were 595 features left, with an average of 111 triples per feature.

After this process, all the triples left are of the form “feature is adjective” or “feature is not
adjective” and so are stored in the ToKnow index.

4.2 Finding Synonyms and Similarities

Here we present all the approaches we used to find synonyms and similar words. Since our aim
is to find either synonyms or similarities, we use these words indistinctly. We start by describing
first the ones generated with WordNet and then we move on to the ones captured with SpaCy. For
each of these, we are going to give a name with which we will label them throughout the entire
thesis.

In general, we use a pretty heuristic approach; we show all our ideas and then we evaluate them
against a ground truth, that in our case is the result of a survey. We define similarity triples the
triples resulted from one of our similarity functions. In fact, these functions do not return the
synonyms of an adjective, but well-formed triples of the form “feature is synonym_ of adjective”.

In general, our approach takes as input all the triples contained in the dataset and the queried triple,
which can be divided into its feature and its adjective. We mention once again that all the triples
are of the form “feature is adjective”. The triples are stored in a dictionary data structure, where
each key is a feature and its value is a list of all the triples having that feature as first term. The
first step is to retrieve these triples for the feature concerned. Then, in each of the methods, which
we describe later, we use a different synonym__function to retrieve the synonyms. The input of this
function varies on the method, but in general the feature is considered only by the methods that
take context into account. It returns a list of triples of the form “feature is synonym_ of adjective”,
which is then intersected with the triples existing in the data for that feature. It would have been

9

4.

APPROACHES

10

possible to implement this intersection inside of the synonym_ function, but we decided to keep
these functions free from the data, so that they could be re-used for other purposes too. However,
for one method this step is done inside of the synonym__ function because this method is very slow
at retrieving and giving it a smaller dataset helps speeding up the computations. This procedure
is explained in Algorithm 1. The inputs between brackets in the synonym_ function show the
parameters that are taken into account only by some methods, and will be explained later.

Algorithm 1 Given the existing triples in the data, the feature and the adjective of the queried
triple, it returns a list of triples of the form “feature is synonym_ of adjective” if they are present
in the data and retrieved by the synonym_ function.

1: function RETURN__SYNONYMS(triples, feature, adj)

2: triples_feature = triples [feature]
3: simalarity_triples = synonym__function(adj, (feature), (triples_ feature), (threshold))
4: return similarity_triples N triples_ feature

An interesting fact about the triples we are considering is that they are not only positive, but also
negative. We consider “feature is not adjective” and “feature is antonym(adjective)” as synonyms,
since they express the same feeling, as in “room is quiet” and “room is not noisy”. Thus, we will
not discuss a different way to treat these triples and will use the most effective method together
with WordNet’s antonym function to retrieve their similarity triples.

4.2.1 Lexical Approaches

The lexical approach involves the use of a lexical database, WordNet. We choose to use this
tool because its synsets represents synonyms, which are the base of our research. Going back to
Figure 2.2, we are going to concentrate on the “see also”, “similar to” and “antonym” attributes.
Since we are looking for similarity between adjectives, we do not consider the “attribute” and the
“derivationally related forms” useful.

Since WordNet acts as a dictionary, it is not possible to discover to which synset a particular triple
belongs. Thus, in all our approaches with this technology we consider all the possible synsets and,
as mentioned before, the context is then given by the existing data.

We now show different approaches in which we capture different levels of synsets and attributes.
Let us consider:

lemmas__syns(S;) = lemmas(S; U see__also(S;)) (4.1)

lemmas__syns__simil(S;) = lemmas(S; U see__also(S;) U similar_to(S;)) (4.2)
The approaches we analyse are:

1. UnSyn: union of all the lemmas of the synsets and of their “see also”.

n_ synsets

U lemmas__syns(S;) (4.3)

=1

2. UnSynSim: union of all lemmas of the synset, their “see also” and their “similar to”.

n__synsets
U lemmas__syns__simil(S;) (4.4)

i=1

3. UnSynSyn: find the lemmas of the synsets of all the lemmas of Equation 4.1 and then unite
them with Equation 4.1 itself.

n__synsets
U lemmas(synsets(lemmas_syns(S;))) Ulemmas__syns(S;) (4.5)
i=1

4.2. Finding Synonyms and Similarities

4. UnSynSynSim: equivalent to the third one, but considering Equation 4.2.

n__synsets
U lemmas(synsets(lemmas_syns_simil(S;))) Ulemmas_syns_simil(S;) (4.6)
i=1

We could consider larger and larger sets, but we did not think it was meaningful because the more
we consider synsets of higher degree, the more we distance ourselves from the original word.

4.2.2 Word-Vector Approaches

We use SpaCy for our word-vector approaches because it is a tool for NLP based on the latest
research, implemented to be used in real products and that already contains pre-trained models
for word vectors. We are going to use its largest model to find similarity between adjectives.

The SpaCy vocabulary contains all the words retrieved by the text it is trained on, and since the
vocabulary used in reviews is pretty straight-forward, we can assume that vocabulary reviews C
vocabulary__spacy.

The algorithm for the first of our approaches, SpaCyPlain, is described in the following lines.
Given the adjective of the triple and a threshold for the cosine similarity, we first find the vector
associated with the adjective using SpaCy. Then, we find the list of antonyms for all synsets with
the help of WordNet. Afterwards we go through the SpaCy vocabulary and for each word we
check: (1) if the word is an adjective (with WordNet), (2) if it is not in the list of antonyms and
(3) if the cosine similarity between the vector of the current word and the vector of the adjective
has a score above a certain threshold. If all apply, the word is converted to a triple of the form
“feature is word” and added to the found synonyms. The necessity of finding the antonyms and
pruning them from the final result arises because word vectors only take into account context and
not polarities. Therefore, if a sentence appears with both “good” and “bad”, both will appear in
the results.

Logically we would consider two vectors similar if 0.5 < cos(f) < 1. To find the best threshold
among those values we evaluated them against the ground truth (section 5.3) and found that the
most suitable one is 0.7. This value will be used for all the SpaCy approaches.

Algorithm 2 Given the adjective of the triple and a threshold for the cosine similarity, it returns
a list of triples of the form “feature is synonym_ of adjective” if the cosine similarity between the
adjective and its possible synonyms is greater or equal to the threshold.

1: function SYNONYM__FUNCTION__SPACY(adj, threshold)

2 similarity_triples = |]

3 vector__adj = vector(adj)

4 antonyms = antonyms(adj)

5: for each word € spacy_vocabulary do

6 vector_word = vector(word)

7 if adjective(word) and word ¢ antonyms then

8 if similarity (vector__adj, vector__word) > threshold then
9 similarity_triples += to_ triple(word)

10: return similarity_triples

The second approach, namely SpaCylFeat, is a slight modification of the previously mentioned
one. From this approach on we try to take context into account. The intuition is that if we want
our target adjective to be in a certain context, we can try to use a vector that takes us closer to
that specific context.

Considering our standard triple “feature is adjective”, we add a new input to Algorithm 2, that is
the sum of the vector of the feature and of the vector of the adjective:

vector(SpaCylFeat) = vector(feature) + vector(adjective) (4.7)

We will always simplify the view of our vectors to two dimensions. Visually, the sum is obtained
by the parallelogram law. We can draw the vectors such that their initial points coincide and then
complete the parallelogram. The resulting diagonal between the initial point and its opposite is
the sum of the two vectors (Figure 4.1).

11

4.

APPROACHES

12

good + break fast

brea

good

FI1GURE 4.1: Representation of the sum of the vectors “good” and “breakfast” in two dimensions.

Mathematically, it is calculated by adding the correspondent components of the vectors. Since

all vectors have the same size of 300, considering the vectors A = (aj,as,...,as00) and B =
(b1, ba,...,bs00) the equation is as follows:
A+ B = (ay +by,ag + by, ..., as0 + bsoo) (4.8)

However, this would work for any vector size.
Going back to Algorithm 2, this approach uses the sum of vectors as a comparison for similarity
instead of using the vector of the word.

The SpaCy2Feat approach applies the principle just explained to both the input vector and the
adjectives in the data. Therefore, the sum of vectors of feature and adjective is computed for the
input triple and also for the same feature and the current word taken into account. In Algorithm 3
it is possible to see that the algorithm works in the same way as before, but now it computes the
similarity between the two sums of vectors and this might take us even closer to the context in
which we want the target adjective to appear.

Algorithm 3 Given the triple’s adjective and feature and a threshold for the cosine similarity, it
computes the sum of vectors for adjective and feature and compares them with the sum of the
current word in the SpaCy vocabulary and the feature. It returns a list of triples of the form
“feature is synonym_ of adjective” if they are similar according to the threshold.

1: function SYNONYM_ FUNCTION__SPACY_ suMs(adj, feature, threshold)
2 similarity_triples = |]

3 vector_adj = vector(adj)

4 vector__feature = vector(feature)

5: sum__adj__feature = vector__adj + vector__feature

6 antonyms = antonyms(adj)

7 for each word € spacy_vocabulary do

8 vector__word = vector(word)

9 if adjective(word) and word ¢ antonyms then

10: sum_ word__feature = vector__word + vector__feature

11: if similarity(sum_ adj__ feature, sum_word__feature) > threshold then
12: similarity_triples += to_ triple(word)

13: return similarity_triples

In the context approaches, another idea is to take the intersection between the closest adjectives
to our original adjective and the ones closest to the feature. We call this method SpaCylInter. The
result set is then:

synonyms = synonym,__function_ SpaCy(adjective) N synonym__function_ SpaCy(feature)
(4.9)

4.3. Expanding and Ranking Adjectives According to Intensities

The synonym__function_SpaCy used in this case is the same of Algorithm 2, but in
synonym__function_ SpaCy(feature) it uses the feature instead of the adjective for the compari-
son.

In our last method we want to consider each triple as an entity so that we can measure the similarity
between entities. In SpaCy it can be achieved using documents. In the SpaCy API a document is a
sequence of words, punctuation symbols, whitespaces etc. Documents have a similarity method that
estimates the semantic similarity (cosine similarity) of the words contained in them. We achieve
this with the SpaCyDocs method. In Algorithm 4 we show how the similarity of documents is
computed. We create a document for the original triple and for each triple that exists in the data.
The “to__sentence” method transforms a triple of the type “breakfast is good” in “good breakfast”.
Then, the similarity between the documents is compared with a threshold. As you can see, this
method loops over the already existing triples in the data and not the SpaCy vocabulary like the
previous ones. The reason is that this method is very slow because of the document creation step,
and cutting down the number of iterations enhances its performance.

Algorithm 4 Given a triple, the existing triples in the data and a threshold for the cosine similarity,
it returns a list of triples of the form “feature is synonym_ of adjective” if the documents produced
from the original triple and the ones generated with the existing triples are similar according to
the threshold.

1: function SYNONYM__FUNCTION__SPACY_ DOCS(triple, triples_ for__ feature, threshold)
2: similarity _triples = |]

3: sentencel = to_ sentence(triple)

4: docl = Document(sentencel)

5: for each current_triple € triples_ for__ feature do
6: sentence2 = to_sentence(current_triple)

7 doc2 = Document(sentence2)

8: if similarity(docl, doc2) > threshold then

9: similarity_triples += to_ triple(word)

10: return similarity_triples

4.3 Expanding and Ranking Adjectives According to Intensities

In the previous section we consider all synonyms to be equal. Here, we show an expansion approach
that does not consider them equal, but instead uses scales. A scale is a sequence of adjectives that
could be applied to the same feature. Ideally, considering a scale “good, decent, excellent” we
would like to order these adjectives such that the positiveness of the previous one is always less
than the positiveness of the following one. This produces “decent, good, excellent”. If we introduce
negative words and keep the same rules, we could get something like “abominable, bad, decent,
good, excellent”.

To achieve this, we use two different approaches: SentiWordNet and Word2Vec. We choose Sen-
tiWordNet because it provides a ordering scheme based on sentiment. Since the adjectives we
consider always take an opinion into account, we think that this approach is reasonable. The
choice of Word2Vec relies on the fact that it allows analogy queries and it is possible to use it to
get something comparable, such as “Rome is to Italy like Paris is to...7”.

4.3.1 Ranking with Polarities

As mentioned before, SentiWordNet assigns three scores to each synset. However, we cannot know
which of the synsets is the one we intend to use for query expansion. In this context, Poggio et al.
[11] managed to create an algorithm that calculates the weighted polarity for the synsets of a word.
According to this scheme, the ones with negative polarity are indicated with a negative number,
while the ones with positive polarity with a positive one. To achieve this, he first computes the
synset__polarity = positive__score — negative__score, and then for each word the average of their
synset polarities weighted by their sense number (i.e. the frequency of that synset) such that the
more frequent synsets weigh more.

Now we can order them by their weighted average score of polarities, which yields a scale from the

13

4.

APPROACHES

14

most negative to the most positive adjective.
To generate some adjective scales we did the following:

e Choose an adjective adj for which we want the scale and a scale size n
e Generate 5 — 1 similar terms with the help of Word2Vec, avoiding antonyms.
e Find one antonym for adj with WordNet.

¢ Generate § — 1 similar terms for the antonym with the help of Word2Vec, avoiding the words
of the previous set.

e Order the scale according to the previously described method.

In this case we use Word2Vec and its most_similar function to generate the meighbourhood of
the adjective and the neighbourhood of its antonym. The most_similar function takes as input
one word and returns all the closest words (that are adjectives) to the word vector of that word
in descending order. Thus, the closest one is the first one appearing in the list. In practice we
consider lists of 10 adjectives meaningful for our research, so we look for five positive ones and five
negatives ones.

However, Word2Vec has to take a model as an input. Very famous is the Google News word-vector
model. Tt includes word vectors for a vocabulary of 3 million words and phrases that are trained
on roughly 100 billion words from a Google News dataset. We also train our own model on the
reviews of our dataset for Rome.

Since we have both models, we generate scales for both of them, and then merge them: in this
way we can have a scale with a more averaged position of the adjectives and more words. In fact,
the merged scale has as position the average of the positions of that word in the two scales.

For example, we select the adjective “adequate” and a scale size of 10. We start first with the
Google News word-vector model, and we find four adjectives in the neighbourhood of “adequate”:

sufficient, insufficient, ample, necessary

Then, we find with WordNet one antonym for “adequate”, that is “inadequate”, and we find its
neighbourhood:

deficient, ineffective, unsatisfactory, inefficient

Now we have 10 adjectives: eight from the neighbourhoods, “adequate” and “inadequate”.
We now combine them by looking at their SentiWordNet scores and obtain:

insufficient — sufficient — deficient — inadequate — unsatisfactory — ineffective — inefficient
— adequate — ample — necessary

We do again the same for the reviews model, and we obtain the following scale:

insufficient — sufficient — deficient — inadequate — ineffective — dysfunctional — adequate —
serviceable — functional — satisfactory

We can now merge the two scales calculating the average of their position and obtain the following
scale:

insufficient — sufficient — deficient — inadequate — unsatisfactory — ineffective —
dysfunctional — inefficient — adequate — serviceable — ample — functional — satisfactory —
necessary

4.3.2 Ranking with Word Vectors

As far as we are concerned, the real power of word vectors is predicting a relation between two
words given an input relation of two other words. A very common example is “Man is to king like
woman is to..?” In this case most of the word-vector models returns “queen”. In the vector world,
this can be visualised as king — man + woman = queen, which involves projection of vectors and
then finding the closest word to the expected point where the word should be (Figure 4.2).

We call the following approach scale learning. Assume that we use the scale “abominable, bad,
decent, good, excellent” and we want to find an equivalent scale for “friendly”. We select “good”

4.4. Integrating Synonyms into Queries

Y
king /2
.
.
L
.
.
.
- —man
man .
—f-woma’r‘L_ Y
3 Y 3 e ne?
Voessr®® queen
woman

FIGURE 4.2: Visualisation in two dimensions of vector sum and difference to retrieve “queen”.

as seed word and we ask the system “good is to excellent like friendly is to..?” and it returns
a word that has the same relation as excellent has to good. If we do this for each term in our
reference scale, we obtain a new scale that refers to “friendly” in the same way “good” refers to

the reference scale.
To create a reference scale we used the SentiWordNet approach with the adjective “good” and its

antonym “bad”. From this scale we generate the others. Here follows our reference scale:

horrific — dreadful — terrible — bad — reasonable — decent — good — nice — superb —
excellent

Also in this case we use both the Google News word-vector modeland the reviews models and then
merge the result. Looking at the example “adequate” from before, we use the above reference scale

to generate the Google News scale:
horrifying — inadequate — inadequate — inadequate — sufficient — sufficient — adequate —
sufficient — sufficient — sufficient
Then, we generate the reviews scale:
atrocious — inadequate — atrocious — objectionable — modest — sufficient — adequate —
serviceable — exquisite — sufficient
And finally we merge them:
horrifying — atrocious — inadequate — objectionable — modest — adequate — sufficient —

serviceable — exquisite

In the scale learning approach the merging of scales helps us dispose of duplicates. In these scales
we use “good” as seed word, so each comparison is always of the type “good is to horrific like
adequate is to..?” and the term returned is always inserted at the position that horrific has in the

reference scale. This is repeated for all terms in the scale.

4.4 Integrating Synonyms into Queries

The purpose described from the start is to relieve people from formulating complicated queries,
and let the system instead do so. To integrate our methods into the system we have two proposals:

e Use the best of our methods from section 4.2 to extend the original query as if the synonyms
were just other occurrences of the queried terms.

o Create a scale of adjectives starting from the queried one with one of the previous approaches.

Due to time constraints we cannot present any practical results for these approaches. However,

both of them rely heavily on the quality of the retrieved synonyms. Therefore, the good results for
the synonym retrieval (section 5.3) indicate, that the results for our query expansion approaches

should also be favorable

4.

APPROACHES

16

4.4.1 Expanding with Synonyms

Assume that synonym__ function(“location is stunning”) returns “location is beautiful”, “location
is marvelous”, “location is good” and “location is not ugly”. If we retrieve the reviews to which
these triples belong, we still would not have a way to order them. Ideally, we would like to have all
occurrences of the synonyms of an adjective substituted by the adjective itself, because we consider
all of them as equal. The ToKnow system uses the Term Frequency-Inverse Document Frequency
(TF-IDF) score for each possible combination of term and document, where in our case each term
is a triple and each document is a review. This score is a measurement of how important a term is
in a document, which we adjust in such way that the resulting new score TF'-IDF score measures
the importance of a triple and all its similarity triples in the document. The original TF-IDF is
the product of the weighted term frequency and the inverse document frequency:

TF-IDF(t,d) = TF(t,d) - IDF(t) (4.10)

Assume that tf(¢,d) is the number of occurences of term ¢ in document d, then for tf(t,d) > 0
we define the weighted term frequency TF(t,d) = 1 + logtf(t,d), and TF(t,d) = 0 otherwise.
Therefore higher values of TF(t,d) imply a higher frequency of ¢t in d. The value IDF(t), on the
other hand, measures how important a term is in relation to the entire corpus of documents, giving
lower scores to terms that occur in many documents. Let N be the total number of documents
and df (t) the number of documents that contain term ¢, then we get:

N
IDF(t) = log (df(t)) (4.11)
In both TF(t,d) and IDF(t) a logarithmic scale is used, such that only large differences in frequen-
cies lead to significant changes in scores. Also, we want to mention that, in the special case that
a term occurs in all documents (i.e. df(t) = N), the value IDF(t) and therefore TF-IDF(t,d) is 0.
Now we use the scores to define our new TF-IDF score. Our TF-IDF' calculates the score for
a virtual set of documents where we replaced all the synonyms with the original adjective, with-
out actually substituting, but computing it over the existing data. Taking the previous example
of “location is stunning”, we virtually substitute “location is beautiful”, “location is marvelous”,
“location is good” and “location is not ugly” with “location is stunning” itself. We now make
two reasonable assumptions: We assume, that there are no triples that occur in all documents
(i.e. there is no term with IDF(t) = 0, that is, no term that occurs in all documents). Also, let
S ={s1,...,8,} be the set of synonym terms of ¢, we do not expect two triples that are synonyms
to appear in the same review (i.e. there cannot be)’ _gdf(s) > N). We assume that this is
reasonable because overlaps in reviews are rare. Suppose we have substituted all the instances of
t with its synonyms, now TF(t) is:

TF (t,d) = TF(s1,d) + TF(s2,d) + -+ + TF(sp,d) (4.12)

Since we have the document frequencies stored, we can now calculate IDF (t) by leaving the
definition of IDF(t) unchanged except for summing the document frequencies of all synonym terms.
Considering the assumption above (i.e. there are no overlaps), this is exactly the value that we
want to compute; and even if there are few, this would still be a good approximation:

N
IDF (t) = log (df(sl) +df(52)+~~+df(sn)> (4.13)

We can now compute TF-IDF'(t,d) as TF (t,d) - IDF'(t). If an user formulates a combined query

q, such as “beautiful location and large room”, it is translated into the triples “location is beautiful”
and “room is large”. Then, given a document d, we can calculate the TF-IDF score for each of
the triples. The sum of all scores is the total score for the query-document combination:

TF-IDF(, 5 =Y TF-IDF'(t,d) (4.14)

teq

However, we need some algorithm to rank the sums of TF-IDF for each document (i.e. review).
We compute it, as done before in ToKnow, with the Threshold Algorithm [1].

All the reviews are now ordered by the frequency of the searched terms, but not by intensity. In
the next sections we propose an approach that expands using the scales described before.

4.4. Integrating Synonyms into Queries

Negative 0 Positive
horrific terrible bad good great excellent
Errrrrnnnnnnnnnnnrnnnn i nnnnan iiiesiseesssseersssaas

FIGURE 4.3: Illustration of how expansion is carried out on scales. The dotted arrows show the
directions of the expansion considering if the adjective has a positive or a negative polarity.

4.4.2 Expanding with Scales

We imagine that a user that queries the system for “great breakfast” would like to have only positive
comments about this feature. Likewise, if an user queries for “bad breakfast” (for instance, with
the intent of checking whether the hotel they want to book has any bad reviews on such feature)
they would like to only have reviews mentioning the bad aspects of this feature. Our idea is
expressed by Figure 4.3. So, we use SentiWordNet to recognise if an adjective used in a query has
a positive or a negative sentiment. In the first case, we expand only with the ones above the term,

making the query “breakfast is great” produce the “breakfast is great” and “breakfast is excellent”.

On the contrary, we expand only with the ones below the term, making the query “breakfast is
bad” produce “breakfast is bad”, “breakfast is terrible” and “breakfast is horrific”. This concept
applies for both the SentiWordNet and the Word2Vec scale.

We discuss in the next lines this approach with the SentiWordNet scale. We first check if sentiment
of the adjective is positive or negative. Afterwards, the approach is very similar to the one used in
subsection 4.3.1, but instead of selecting a neighbourhood from all the possible words in Word2Vec,
we select only the terms that actually appear in our data for such feature. For an adjective with
positive sentiment, we generate only the positive scale with adjectives that have a synset score
higher or equal to the starting adjective. For an adjective with negative sentiment, we generate
only the negative scale with adjectives that have a synset score lower or equal to the starting
adjective.

Formulating a query with the Word2Vec scale have different results. Using the reference scale
mentioned in subsection 4.3.2, if the queried adjective is included in this scale, this is used and
we would fall back in to the previously explained approach. If not, a new scale is created starting
from the seed word decent, which we picked is reasonably in the middle. The scale is generated
with the approach described in subsection 4.3.2, but instead of taking any adjective in the space,

it takes the adjective for such feature that exists in the data and is closest to the expected point.

Only the more positive or more negative part of the scale for the queried adjective are considered.
To actually rank the reviews containing the triples generated from one or the other scale, we first
do the same as in subsection 4.4.1 to compute the TF-IDF scores for the query adjective and
all the adjectives that are going to be used for the expansion. In this case, we consider all these
adjectives as equivalent. Then we multiply the relevance score for each review (TF-IDF') by the
rank of its used adjective in the scale. This rank is the position of the adjective in the scale and
is normalised to be between 0 and 1. Now we can rank the reviews according to this value.

17

Evaluation 5)

To evaluate our approaches we used two different types of assessment. The first one is based
on statistics and shows the quantity of synonyms that can be retrieved using our methods. The
second one is a qualitative evaluation, that judges our methods against a ground truth. In the
first section, we describe the statistical evaluation. In the second one, we show how we built our
ground truth. In the third one, we present the qualitative assessment.

5.1 Looking at the Numbers

To have an idea of how many synonyms we get in general, not considering whether they are actually
right or wrong, we calculate their distribution for each of the previously mentioned approaches.
As a quick summary, here follow the names:

1. UnSyn

2. UnSynSim
UnSynSyn
UnSynSynSim
SpaCyPlain
SpaCy1Feat
SpaCy2Feat

SpaCylnter

© Lo N o ool W

SpaCyDocs

To have an initial evaluation of the number of synonyms retrieved for each approach we asked
ourselves the question how often do we get how many?.

Figure 5.1 shows how many synonyms we get for the lexical approach. Even though the maximum
number of synonyms retrieved by the UnSynSynSim approach is 143, we cut the plot at 60 syn-
onyms, because after that only few adjectives have higher numbers.

Many of the adjectives have up to 30 synonyms in at least one of the approaches, but still many
more have five or less synonyms. For the UnSynSynSim method, the adjectives that capture five
or less synonyms are three times more than the ones that capture more.

Similarly, in Figure 5.2 it is possible to see the number of synonyms for the word-vector approaches.
In the same way we cut the plot at 300, even though the SpaCyDocs approach retrieved up to
1160 synonyms and the SpaCy2Feat approach retrieved up to 1030 for some features. Here, all
approaches but two have very often 20 synonyms. The other two, instead, have less but distributed
more homogeneously.

Let us now have a look at the distribution of synonyms for one of the most common features:
breakfast. In Figure 5.3 it is possible to see the UnSynSynSim, SpaCy2Feat and SpaCyDocs

19

5. EVALUATION
1,000 ‘ ‘
— UnSyn
UnSynSim
800 |- —— UnSynSyn
—— UnSynSynSim
T 600 |
N
g
)
g
= 400| .
200 - N
0 1“ o TR D e S G
0 35 40 45 50 55 60
HowM anySynonyms?
FIGURE 5.1: Distribution of synonyms for the WordNet approaches.
1,000 I I I
—— SpaCyPlain
SpaCy1Feat
800 | —— SpaCy2Feat
—— Spacylnter
SpacyDocs
T 600 |
A
pag
Q
g
= 400 JW ol gk |
MU
200 N
mﬁ\- WWHP
Rl g TP
' WM&« y&wm.wx_

20

! ! ! ! ! ! ! ! ! b
40 60 80 100 120 140 160 180 200 220 240 260 280 300

HowM anySynonyms?

F1GURE 5.2: Distribution of synonyms for the SpaCy approaches.

approaches. We choose to show these ones because they are the ones with the most significant
results over the whole set of adjectives.

The WordNet approach retrieves up to 50 synonyms, and the SpaCy2Feat collects many adjectives
but not very often. On the contrary, SpaCyDocs collects many between 0 and 250. The maximum
number for the two word-vector methods is around 650.

As a summary, Table 5.1 and Table 5.2 contain the averages for the different methods. The results

confirm what we saw in the plots: WordNet retrieves many time times a low number of synonyms,
while SpaCy finds many more.

This is also shown by the weighted average. Table 5.3 and Table 5.4 answer to the question what
is the expected number of synonyms? Here we compute the average weighted by the frequency of

the original adjective. The results are not very different from before and they confirm what has
been previously said.

5.2. Building the Ground Truth

1,000 ‘
—— UnSynSynSim
SpaCy2Feat
800 |- —— SpaCyDocs
600 |
s
g
Q
5 400 [y A " h
‘ ey Ml am \“ ‘1‘ N
" el ! |
: W‘z Jy;
200 - W 2 o0 ‘ i
JUSfL %M&MM%
0 %, LA ‘ ‘ ‘ “WW\’W‘WMM\W
0 50 100 150 200 250 300 350 400
HowM anySynonyms?

FIGURE 5.3: A comparison of the approaches with the most synonyms from the two categories for
the feature breakfast.

5.2 Building the Ground Truth

The intuition for building the ground truth is to ask some authority if two words are synonyms or
not, so that we can calculate measures such as precision and recall. However, such authority does
not exist, especially when considering context. A second idea was that we ourselves could be the
judges, but we did not think that our perception alone was a good enough motivation. Thus, we
decided to create a survey and gather participants, so that the average of their opinions could be
our judge.

Our first aim was to assess the quality of the similarity triples retrieved. Thus, we thought about
how many questions could be useful, without asking too many to a single participant. We reasoned
that 100 questions, if very simple, could be a good compromise. In fact, by choosing the five most
common features, we could question the participants over 20 pairs of adjectives each.

Table 5.1: Average of synonyms for the WordNet methods.

Method UnSyn UnSynSim UnSynSyn UnSynSynSim
Average 0.51 1.47 1.12 2.77

Table 5.2: Average of synonyms for the SpaCy methods.

Method SpaCyPlain SpaCylFeat SpaCy2Feat SpaCylnter SpaCyDocs
Average 0.90 0.37 68.54 0.003 71.06

Table 5.3: Weighted average of synonyms for the WordNet methods.

Method UnSyn UnSynSim UnSynSyn UnSynSynSim
Weighted Average 0.85 2.46 1.78 4.40

Table 5.4: Weighted average of synonyms for the SpaCy methods.

Method SpaCyPlain SpaCylFeat SpaCy2Feat SpaCylnter SpaCyDocs
Weighted Average 1.63 0.55 81.06 0.009 84.57

21

5.

EVALUATION

22

The process of choosing the pairs worked as follows in the next lines. We consider frequent adjectives
for a feature F all adjectives that belong to the first half of the list of adjectives € F' in descending
order of frequency. We consider infrequent adjectives the ones belonging to the second half of the
list. Both sets are interesting for our research; in fact we would like to expand from a frequent
term to another frequent term, so that we can gather more reviews and more opinions, but also
from a frequent term to an infrequent term, so that we can retrieve reviews we would not have
searched for otherwise.

e For each feature, 10 pairs of adjectives were chosen randomly.
o For each feature, 15 pairs of related frequent adjectives were chosen by us.
e For each feature, 15 pairs of related infrequent adjectives were chosen by us.

This procedure was repeated two times. After that, we had two documents for a total of 400 pairs
of adjectives.

In addition to the frequent and infrequent pairs, we thought it was a good idea to add some ran-
domness. However, not many of them were interesting and the ones, which were interesting, were
translated into the frequent/infrequent scheme.

Ideally we wanted half of the pairs to be labeled as related and half of them as unrelated, so that
we could test both the precision and the recall of our system. Thus, we passed the set through
our methods. Afterwards we chose the most interesting 100 out of 400, dividing them first into
retrieved and interesting and not retrieved but interesting. The choice was made for trying to keep
them half retrieved, half not retrieved, half frequent, half infrequent.

During this process a question emerged: is similarity symmetric? We could not answer the ques-
tion ourselves, especially because some adjectives can include some others, but the contrary might
not be true. An example is that a clean room is a good room, but a good room is not always a
clean room. So we decided to have two different versions of the survey: one with the chosen pairs
and one with their symmetric version.

All question were of the form Do you think that competent staff is similar to exceptional staff? and
the participants were asked to rate the similarity in a Likert scale from one to five. We chose this
type of answer because its result can be assessed with different thresholds.

A second interesting assessment was about the performance of word-vector on scaling adjectives.
The participants were asked which scale out of two was the one describing one particular adjective
best. One scale was created by SentiWordNet with the approach described in subsection 4.3.1, the
other one with Word2Vec with the approach described in subsection 4.3.2. However, we had to
resize the scales to make them of the same size, so that participants could compare them better.
This was done by cutting the larger scale by selecting the closer adjectives to the queried one.
Since we had two versions of the survey, we decided to use different seed words (we picked decent
and good) for the second approach, but the same adjectives.

In the end, the survey was composed of three parts:

o A section regarding information about the participant (age and sex).

e A second part with ten question on the comparison between the SentiWordNet and the
Word2Vec scales.

e 100 question for adjective comparison.

5.3 Comparing the Results

For our survey we managed to collect 40 participants: 21 for the former questionnaire, 19 for the
latter.

Regarding the comparison of the scales, the participants did not find one scale significantly better
than the other. In fact, the result showed that the scales are hardly of any difference. In Figure 5.4
you can see the results for this type of question for the adjective tasty. The scale of adjectives for
SentiWordNet is:

tasteless — puerile — watery — tasty — scrumptious — yummy — delectable

The scale for Word2Vec in questionnaire 1 is:

5.3. Comparing the Results

E SentiWordNet E SentiWordNet
O Word2Vec O Word2Vec
(a) Result for questionnaire 1 (b) Result for questionnaire 2

FIGURE 5.4: Result of users’ preference over the “tasty” scale.

nightmarish — horrifying — vile — appetizing — tasty — yummy — delicious
The scale for Word2Vec in questionnaire 2 is:
nightmarish — gruesome — tasteless — appetizing — delicious — tasty — delectable

In this case, the participants slightly preferred the Word2Vec approach. However, the average for
SentiWordNet in questionnaire one is 52% and in questionnaire two is 48%, which gives 50% when
averaging the two questionnaires.

This results shows how, given a reference scale, Word2Vec can mimic the relations between the

words given by SentiWordNet, so that humans cannot have a strong opinion on which one is better.

The answers given by the participants for the synonym questions are on a scale from 1 to 5. To
access them, we compute the average for each question, and we check first how many out of the
200 given pairs are considered synonyms using different thresholds. To make it more precise, we
set as constraint that average > threshold and variance < 1.5. We choose to take into account
the variance because some pairs might have an average of 4, but some people might still have
rated them as 1s. We think that the value 1.5 can reduce this problem without setting too strict
constraints. The problem of the variance shows how people evaluate the similarity between two
adjectives differently, even if a context is given, and shows why this research is important. The
results are summed up in Table 5.5. Out of those, we chose to use a threshold of 3.5 because this
number is above average but not too strict.

As explained by Manning et al. [10], in order to access the effectiveness (i.e. the quality of the
results) of our system we need some measures. These measures are called precision, recall and
F-score. To compute these measures, we need first some definitions:

e True Positive: an instance retrieved by the system and considered correct by the ground
truth.

o False Positive: an instance retrieved by the system and considered wrong by the ground
truth.

e True Negatives: an instance not retrieved by the system and considered wrong by the ground
truth.

o False Negatives: an instance not retrieved by the system and considered correct by the
ground truth.

Table 5.5: Pairs considered synonyms by the users using different thresholds for similarity. In
the first line, setting only average > threshold. In the second line, average > threshold and
variance < 1.5.

Threshold 2.5 3.0 3.5 4.0 4.5

N. Synonyms (no variance) 174/200 140/200 90/200 52/200 12/200
N. Synonyms (with variance) 140/200 116/200 77/200 49/200 12/200

23

5.

EVALUATION

24

Ideally, we would have only true positives and true negatives. The precision is defined as the
fraction of relevant instances among the retrieved instances (Equation 5.1). A document is relevant
if a user perceives the contained information of value.

. TruePositives
Precision =

5.1
TruePositives + FalsePositives (5-1)

The recall is defined as the fraction between the number of correct positive results and the number
of all relevant samples (Equation 5.2).

TruePositives

Recall =

5.2
TruePositives + FalseNegatives (5:2)

The F-score is the harmonic mean of precision and recall and can show very neatly how a method
performs.

Precision - Recall

F — score =2- (5.3)

Precision + Recall

For all these measures, their best value is one and their worst value is zero.

We now present a table showing the results of our similarity methods, taking the variance into
account and not doing so. The results with the variance constraint are in brackets. In Table 5.6 we
can see the results for the WordNet methods and in Table 5.7 the results for the SpaCy methods.
This shows that the methods that in general collect more synonyms are also the ones performing
better on the ground truth. Others have a quite high precision, but do not retrieve many synonyms
in general. This can be deducted by the fact that the recall is quite low: it means that the number
of false negatives is quite high. The SpaCylnter method does not retrieve any synonyms, which
means that the intersection of the two sets of synonyms of feature and adjective is not a good
approach. Comparing the UnSynSyn and the UnSynSynSim approaches, we notice that the first
one does not retrieve many and is also not precise, unlike the second one, although it is just an
extension of the first one. We can deduct that expanding with the “similar to” attributes yields
more synonyms, while doing so with the synsets creates a too wide distance between the retrieved
words and the original adjective. It is easy to see that the SpaCy2Feat and the SpaCyDocs methods
are the ones that perform best, which means that word vectors produce better results when taking
into account the context of the feature

Table 5.6: Pairs considered synonyms by the users using the WordNet methods using 3.5 as a
threshold.

Method UnSyn UnSynSim UnSynSyn UnSynSynSim
Precision 0.5 0.89 0.25 0.69
(0.5) (0.89) (0.25) (0.69)
Recall 0.02 0.18 0.02 0.2
(0.03) (0.21) (0.03) (0.23)
F-Score 0.04 0.3 0.04 0.31
(0.05) (0.34) (0.05) (0.35)

Table 5.7: Pairs considered synonyms by the users using the SpaCy methods using 3.5 as a threshold

and 0.7 as cosine similarity threshold.

Method SpaCyPlain SpaCylFeat SpaCy2Feat SpaCylnter SpaCyDocs
Precision 0.89 0.83 0.49 0 0.48
(0.83) (0.83) (0.42) (0) (0.41)
Recall 0.18 0.11 0.96 0 0.93
(0.19) (0.13) (0.96) (0) (0.94)
F-Score 0.3 0.2 0.64 0 0.63
(0.32) (0.22) (0.58) (0) (0.57)

5.4. Lesson Learned

From the beginning we assumed that the best threshold was 0.7 and now we are going to give a
reason by looking at a table containing precision, recall and F-score for the two SpaCy approaches
with the highest values (Table 5.8). We are going to show only the results considering the variance,
since the distribution is the same in both cases.

In the table is possible to see how the number of synonyms retrieved by the two approaches for
thresholds 0.5 and 0.6 are the same, which means that for this set of adjectives there are many
with 0.5 < cos(6) < 0.6. For 0.7, we get a bit more precision and a bit less recall: the number
of synonyms retrieved is slightly less than before, more are categorised as false negatives and less
as false positives. For threshold 0.8 the ratio changes very much for both approaches. In fact,
the number of relevant instances, which were captured before with lower thresholds, are now false
negatives. For 0.9 not many are retrieved; we can assume that is quite unlikely for word vectors
to have such a high cosine similarity. We choose 0.7 as threshold because it is not too strict but
still is reasonable to assume that a cosine of 0.7 yields similar results. Furthermore, it is the one
for which we obtain the best results.

The only still open assessment is symmetry. We handed out two different versions of the synonyms
so that we could test if humans think that similarity is symmetric. To test for symmetry we checked
if the averages given by the participants were over 3.5 or below 3.5 in both questionnaires. The
result is that 86% of pairs are symmetric when not considering the variance, 83% when considering
it, thus, we can confirm that naturally humans find similarity symmetric.

As a last remark, we computed the correlation between the personal data we have retrieved in
the survey (i.e. age, sex) and the answers regarding scales and synonyms, but no significative
correlation was found.

5.4 Lesson Learned

Our research is based on the quest of semantic similarity in the context of user reviews. This
problem arises because people have different ways to express themselves and interpret what they
read. Our aim is to allow semantic-related search for adjectives. We addressed this using tools to
develop methods that find synonyms for adjectives. The first idea was to use a lexical database,
WordNet, for this purpose. According to our evaluation, the approach that yields the most results
is the one that expands the most with synsets and “similar to”. The second tool we use is SpaCly,
a system that has pre-trained word-vector models. We used its largest model to find similarity
using word vectors. Here, the approaches that performed better were the ones taking context into
account.

To order these synonyms, we propose two different schemes: one treats all the synonyms of an

adjective as equal, the other uses scales to order them. We introduce two different types of scales.

One created with SentiWordNet, with which we statically order the adjectives according to their
polarity, and another using Word2Vec, that is based on analogies and is created from a reference
scale. Here we summarise our findings:

o Lexical approaches perform well at finding synonyms, even if they do not find many, but
cannot take context into account.

e Word vectors have the power to take context into account, even though they might miss
some synonyms and cannot discover antonyms.

Table 5.8: Values of Precision, Recall and F-score for different thresholds for the methods with
the highest number of synonyms (SpaCy2Feat and SpaCyDocs).

Threshold SpaCy2Feat SpaCyDocs
Precision Recall F-score Precision Recall F-score
0.5 0.39 0.99 0.56 0.39 0.99 0.56
0.6 0.39 0.99 0.56 0.39 0.99 0.56
0.7 0.42 0.96 0.58 0.41 0.94 0.57
0.8 0.51 0.66 0.58 0.49 0.64 0.55
0.9 0.75 0.23 0.36 0.75 0.23 0.36

25

5. EVALUATION

e The performance of the word-vector approaches depend heavily on the trained data, the
threshold values and the ground truth for similarity. These values should be experimentally
defined depending on the application domain. In our experience, vectors trained on larger
corpus perform better and are more precise.

e The idea of learning scales has the potential to improve ranking of subjective content. We
found out that lexical approaches and Word2Vec are comparable for scale learning. But
we can see that Word2Vec allows to learn any scale without the need of complex supervised
learning such as the one used by SentiWordNet. Moreover, scales can be dynamically adapted
according to the vocabulary used by Word2Vec while SentiWordNet provides static scales
due to the static polarities assigned to words.

26

Conclusion and Future Work 6

In this thesis we presented different approaches for finding semantic similarity. We introduced
methods to retrieve synonyms with the help of a lexical database and of word vectors. Moreover,
we have shown efficient ordering schemes. This was done by either looking up a static value for a
sentiment in SentiWordNet or doing analogy reasoning with Word2Vec. Our results have shown
that some of our approaches capture reasonably enough synonyms out of the ground truth, and
that given an ordering scheme, Word2Vec can mimic its relations. Furthermore, we can conclude
that the lexical approaches based on WordNet retrieve fewer adjectives, but they are very precise.
On the contrary, SpaCy is less precise but has a overall better F-score.

Considering that some of the approaches examined in this thesis perform well, we assume that a
combination of these might yield good results. However, in the context of similarity, many other
tools can be used to improve the performance of the methods developed in this thesis. Adagram
(Adaptive Skip Gram) [2] is a word vector based tool that allows disambiguation of terms, such
that one can first disambiguate, and then use the vectors related only to that sense. In the context
of disambiguation we mentioned Lesk [7], which could be used together with WordNet to first
find the sense and to consider only the synsets and the “similar to” synsets of those. Regarding
sentiment analysis, Schouten et al. [15] propose a ontology-based method to find sentiment using
machine learning methods, which could be used an ordering scheme for our approach.

27

Bibliography

[10]

[11]

S. Baccianella, A. Esuli, and F. Sebastiani. Sentiwordnet 3.0: An enhanced lexical resource
for sentiment analysis and opinion mining. In in Proc. of LREC, 2010. URL http://nmis.
isti.cnr.it/sebastiani/Publications/LRECO6.pdf.

S. Bartunov, D. Kondrashkin, A. Osokin, and D. Vetrov. Breaking sticks and ambiguities
with adaptive skip-gram. In A. Gretton and C. C. Robert, editors, Proceedings of the 19th
International Conference on Artificial Intelligence and Statistics, volume 51 of Proceedings
of Machine Learning Research, pages 130-138, Cadiz, Spain, 09—-11 May 2016. PMLR. URL
http://proceedings.mlr.press/v51l/bartunovi6.html.

A. Esuli and F. Sebastiani. Sentiwordnet: A publicly available lexical resource for opin-
ion mining. In In Proceedings of the 5th Conference on Language Resources and Eval-
uation (LREC’06), pages 417-422, 2006. URL http://nmis.isti.cnr.it/sebastiani/
Publications/LREC10.pdf.

R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. In
Proceedings of the Twentieth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 01, pages 102-113, New York, NY, USA, 2001. ACM. ISBN 1-58113-
361-8. doi: 10.1145/375551.375567. URL http://doi.acm.org/10.1145/375551.375567.

C. Fellbaum. WordNet: An FElectronic Lexical Database. A Bradford Book, 1998. URL
http://mitpress.mit.edu/books/wordnet.

G. Hirst and D. St-Onge. Lexical chains as representations of context for the detection and
correction of malapropisms, 1997.

M. Lesk. Automatic sense disambiguation using machine readable dictionaries: How to tell a
pine cone from an ice cream cone. In Proceedings of the 5th Annual International Conference on
Systems Documentation, SIGDOC 86, pages 24—26, New York, NY, USA, 1986. ACM. ISBN
0-89791-224-1. doi: 10.1145/318723.318728. URL http://doi.acm.org/10.1145/318723.
318728.

C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky. Core nlp, 2014.
URL http://www.corenlp.run/.

C. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. Bethard, and D. McClosky. The stanford
corenlp natural language processing toolkit. ACL (System Demonstrations), pages 55-60,
2014.

C. D. Manning, P. Raghavan, and H. Schiitze. Introduction to Information Retrieval. Cam-
bridge University Press, New York, NY, USA, 2008. ISBN 0521865719, 9780521865715.

T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations
in vector space. CoRR, abs/1301.3781, 2013. URL http://arxiv.org/abs/1301.3781.

G. A. Miller. Wordnet: A lexical database for english. Communications of the ACM, 38:39-
41, 1995. URL http://nlp.cs.swarthmore.edu/~richardw/papers/miller1995-wordnet.
pdf.

J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation.
In Empirical Methods in Natural Language Processing (EMNLP), pages 1532-1543, 2014. URL
http://www.aclweb.org/anthology/D14-1162.

29

http://nmis.isti.cnr.it/sebastiani/Publications/LREC06.pdf
http://nmis.isti.cnr.it/sebastiani/Publications/LREC06.pdf
http://proceedings.mlr.press/v51/bartunov16.html
http://nmis.isti.cnr.it/sebastiani/Publications/LREC10.pdf
http://nmis.isti.cnr.it/sebastiani/Publications/LREC10.pdf
http://doi.acm.org/10.1145/375551.375567
http://mitpress.mit.edu/books/wordnet
http://doi.acm.org/10.1145/318723.318728
http://doi.acm.org/10.1145/318723.318728
http://www.corenlp.run/
http://arxiv.org/abs/1301.3781
http://nlp.cs.swarthmore.edu/~richardw/papers/miller1995-wordnet.pdf
http://nlp.cs.swarthmore.edu/~richardw/papers/miller1995-wordnet.pdf
http://www.aclweb.org/anthology/D14-1162

BIBLIOGRAPHY

[14] R. A. E. Poggio. Exploiting user-generated content for hotel ranking. Master’s thesis, Free
University of Bozen-Bolzano, Italy, 2017.

[15] K. Schouten and F. Frasincar. Ontology-driven sentiment analysis of product and service
aspects. In ESWC, volume 10843 of Lecture Notes in Computer Science, pages 608—623.
Springer, 2018.

[16] H. Shima. Wordnet similarity for java, 2013. URL http://ws4jdemo.appspot.com/.

[17] P. University. About wordnet, 2010. URL http://wordnetweb.princeton.edu/perl/webwn.

30

http://ws4jdemo.appspot.com/
http://wordnetweb.princeton.edu/perl/webwn

	List of Figures
	List of Tables
	Introduction
	Related Work
	WordNet
	SentiWordNet
	Word2Vec
	SpaCy

	Problem Description
	ToKnow
	The Problem

	Approaches
	Identifying Features and Adjectives
	Finding Synonyms and Similarities
	Lexical Approaches
	Word-Vector Approaches

	Expanding and Ranking Adjectives According to Intensities
	Ranking with Polarities
	Ranking with Word Vectors

	Integrating Synonyms into Queries
	Expanding with Synonyms
	Expanding with Scales

	Evaluation
	Looking at the Numbers
	Building the Ground Truth
	Comparing the Results
	Lesson Learned

	Conclusion and Future Work
	Bibliography

